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Week 11: Analogue Computer Circuits
11.1 Using an op amp to solve an equation
When an op amp is part of a circuit with feedback and its output is not saturated (i.e. of
a magnitude less than the maximum possible) then the two inputs of the op amp are at
essentially the same potential. If these two potentials are functions of potentials at
other parts of the circuit, and perhaps also of time, then the circuit is in effect settling at
the solution to the equation relating those two functions. We can look at this situation
the other way round, starting with an equation we would like to solve and then
designing a feedback circuit whose potentials will be the solution to the equation.

The most straightforward way to implement such an “analogue computer” circuit is to
build it around the analogue summer. We arrange the equation with one term as its
subject, the left hand side, and all the other terms on the RHS. If there are N terms on
the RHS then we need a summer with N inputs. The output of the (inverting) summer
is obviously then (minus) the term on the LHS of the equation. It is then a matter of
linking the summer output to its various inputs using circuits that correspond to the
functional relationships between these terms.

11.2 Realising the terms of equat ions
In physics and engineering most equations of interest are differential equations. We
therefore need a means of making one signal the time differential of another. The
differentiator op amp circuit has various practical difficulties associated with it, as
explained last week, so we actually use integrators. The output of an integrator is the
integral of the input, so the input is the differential of the output. Since the circuit is to
be used in a closed loop which will settle down to an equilibrium, it makes no
difference whether a particular value is an input or an output to a particular op amp,
since it will be the output or input, respectively, of the adjacent op amps.

The fact that we are using only integrators to represent differential equations does have
one practical consequence: the output of the summer must be the highest order
derivative used in the equation. We should begin, therefore, by arranging the
equation so as to have only the highest order derivative on the LHS.

The other algebraic operations that are required are obviously addition and subtraction
and multiplication and division. Addition is already covered since we are beginning
with a summer circuit. Subtraction is obtained by placing a unity gain inverter before
one of the inputs to the summer.

Multiplication or division by a constant is easily arranged using a simple amplifier or
potential divider which can have variable resistors included so that we can adjust the
values of the constants.

Multiplication or division of two variables in the equation, i.e. of two potentials in the
circuit, requires something new. This is done using a logarithmic amplifier which we
will look at later.

It is implicit in this analysis that the equation to be solved has at most one independent
variable which will be represented by time.

A non-homogeneous equation will have a term which is not functionally related to any of
the others, such as sinωt. Such terms are included in the circuit as inputs from external
sources: a sine-wave oscillator in this instance.
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11.3 A simple example: first order linear differential equation
The most general form of such an equation can be written as

dY

dt
= aY+ b

Notice how the differential term is made the subject of the equation. Y is the dependent
variable and a and b are of course constants.

We begin by setting up the summer circuit, labelling its two inputs and output
according to our equation:

dY

dt

aY
 –

The constant term b is not related to any other term, it is a fixed potential. This can
therefore be obtained from the power supply via an appropriate potential divider to
give the value required.

The term aY is related to the output of the summer through an (inverting) integrator,
and the value of the constant a is determined by the time constant of the integrator,
a = 1/(RC):

Y
dY

dt
 –

In practice the summer is an inverting circuit, but so is the integrator so these two
inversions cancel out. So now we can connect up the entire circuit:

1V dY

dt
 –

Y

aY
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Note that the “solution” to the equation, Y, doesn't actually appear anywhere. The
nearest to it is Y/RC, so if we want exactly Y we would need to include an additional
amplifier or potential divider to scale this signal to give our final output.

We can see that the overall feedback is positive (the closed loop phase shift is −90°), so
we would expect that the solution will not be stabile. In fact it increases exponentially
until one of the op amps saturates. It is important therefore to include the switch in
order to establish the initial conditions: Y = 0 at t = 0.

Exercise 11.1:
Modify the above circuit so that the constant a is a negative number. This should now
produce an asymptotically stable solution.
Construct the circuit in Crocodile Clips, deriving b from a square wave oscillator so as
to easily observe the effect of alternating positive and negative values.

11.4 More complicated example: the driven damped oscillator
Now we have an inhomogeneous linear second order differential equation which we
can write in its general form as

d2Y

dt2 = a
dY

dt
+ bY+ c + d sinωt

The driving term is taken to be a harmonic wave, d sinωt plus an offset c.

Clearly, to relate the second order derivative to the first order derivative and to the
linear term bY we will need two consecutive integrators.  a will be given by the time
constant of the first of these and b will be given by the product of the two time
constants.

Exercise 11.2:
In Crocodile Clips construct the circuit to solve this equation. Initially, choose the signs
of the constants a and b so as not to require the inclusion of extra unity gain inverters.
Try out the circuit to see if it really is a driven damped oscillator. If you feel that the
sign of a and/or b needs to be changed, insert the appropriate inverters.
Determine the relationships between the constants a and b and the resistors and
capacitors in the two integrators.

Exercise 11.3:
Use the analogue computing board to construct a circuit to solve a second order
differential equation. Only two variations are possible using this board: try them both
and deduce the corresponding equations and solutions.

11.5 Analogue multiplier
The basic circuit of the logarithmic amplifier is the same as what we previously
considered to be an approximate half-wave rectifier op amp:

+

–
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We need to use it only in the forward biassed region, i.e. positive input for the circuit
shown.

As it stands this circuit is not very useful as a logarithmic amplifier for several reasons.
  1 The slope resistance of the diode is very small so the output voltage is very small:

so small that we considered it to be negligible when regarding the circuit as a
rectifier.

  2 A standard diode breaks away from the ideal logarithmic law at very small and
very high values of current.

  3 The gain of the circuit depends strongly on temperature because the diode
characteristic is temperature dependent.

To correct all of these defects requires quite a complicated circuit and a transistor base-
emitter junction is used instead of the simple diode. All of this is available packaged
together as a single integrated circuit.

Even as a carefully designed integrated circuit the logarithmic amplifier still needs
many more components to create a full multiplier. We need two logarithmic amplifiers
to multiply two numbers. We need a summer to combine the two logarithms. Then we
need an antilog circuit to generate the final result. This is done by interchanging the
resistor with the diode in the above circuit.

Even now, our multiplier will only work for positive input values. A full 4-quadrant
analogue multiplier is therefore an extremely complex circuit, but it too is available as a
single integrated circuit.

Exercise 11.4:
Crocodile Clips does not include an analogue multiplier (and it would be an impossibly
complicated task to build one up from the available elements).
Using the symbol

×→
A

B
Y

to represent the circuit that provides the function Y = A×B, draw the circuit to find the
square of a voltage. (Yes, this IS very simple.)

Now draw an op amp circuit that will find the square root of a voltage.
Hint: to do this you will now need to think of the feedback “factor” β as a function, not
just as a simple multiplier. Rework the equations for the non-inverting amplifier with
this change to the notation when you will see that the overall op amp transfer function is
the inverse of the feedback function.

Exercise 11.5:
Draw the circuit to solve the non-linear equation:

dY

dt
= aY2 + bY+ c.
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Exercise 11.6:
Using the simple diode logarithmic amplifier and the equivalent antilog amplifier,
construct in Crocodile Clips a positive-input squaring circuit and determine its
accuracy for a range of values.  Chose resistor values to give a diode current of a few
milliamps.

Note: You should not expect your circuit to produce an output of 1V for an input of 1V.
We could express its operation by the equation

Vout = aVin
2

where the constant a will depend on the precise characteristics of the diode and should
be found empirically.  You can try placing a 2-input summer before the antilog circuit
so as to add in a constant voltage to bring the value of a to 1.


