
3C75 Electronics: Week 3: 2003/2004 1

3-1

Week 3: More Advanced Combinatorial Methods
In Week 1 we looked at some general circuit concepts and in week 2 we looked at some
techniques for analysing circuits that operate according to the rules of binary logic. In
particular we saw how to write out the truth table for a specified function and how to
construct the canonical logical form for the logic.

This week we will finish our review of combinatorial logic techniques and look at a couple
of simple applications:

• Using Karnaugh Maps for minimising logic
• Implementing logic as NAND or NOR only
• Binary arithmetic
• Binary Codes

Next week we will move on to look at sequential logic circuits, i.e. circuits with an output
that depends not only on the current state of its inputs but also on the previous states.

3.1 Using Karnaugh Maps for Minimisation
A Karnaugh map is a way to write out the truth table for a circuit which highlights ways in
which the circuit may be simplified. This is important because it allows one to construct
circuits using the minimum number of gates. This might also mean minimum cost, or
minimum chance of an error, or minimum time delay and so it is a matter of some
importance. We will follow the Karnaugh analysis for circuits with one output and up to 4
inputs (i.e. one function of 4 variables).

3.1.1 Constructing K maps
2-variable Karnaugh maps
Consider the canonical expression F = AB + AB . With a little thought one can see that the
variable B is redundant, i.e. its value doesn’t affect F. A Karnaugh Map for this function is
drawn below

B
A

0 1

0 1

0 1

0

1

This is like a 2-dimensional histogram with the possible values of the variables listed along
the two axes and the result of the function written in the boxes at their intersections.

The two 1's in the diagram correspond to the terms AB and AB in the sense that they pick
out functions which are true when (A is true AND B is true) and when (A is true AND B is
true), which is the same as the “coordinates” of these states on the diagram, as shown
below

B
A

0 1

0 1

0 1

0

1

 AB

 A B

3C75 Electronics: Week 3: 2003/2004 2

3-2

Notice that within this map, moving vertically or horizontally by one square, the variables
along the sides change such that just one variable at a time is complemented, i.e. A ↔ A or
B ↔ B . Clearly if changing the value of a variable makes no difference to the result of an
expression then that variable must be redundant. To show this one “loops together” the
adjacent 1’s on the map as below.

B
A

0 1

0 1

0 1

0

1

A

i.e. B is the redundant variable. The looping in this case makes clear that the circuit output F
is just given by F = A. Clearly this is cheaper and easier to implement than the canonical
form F = AB + AB . We can show the same thing using the Boolean algebra theorems:

() AABBAABBAF =⋅=+=+= 1

3-variable Karnaugh maps
It is with 3 and 4 variables that K-maps come into their own,
allowing one to spot redundancy with relative ease. For three
inputs A, B and C one can draw a K-map as shown right.
Notice that along the top, the ordering of the AB states is such
that only one variable at a time changes: first B then A then B
again. The function we used earlier F = A BC + AB C + ABC
can be drawn on this map as follows

C
AB

00 01

0

1

11 10

1 1

10 0

0 0

0

Notice how each minterm corresponds to a 1 on the map at the coordinates where each
factor within the minterm is taken as true , so the first minterm A BC puts a 1 in the box at
011, or (01)(1), since when A is true A is false (0).

We can see that there are no redundant variables on this map i.e. no loops are possible
between adjacent squares containing a 1, and so no minimisation of this form is possible.
(However see next week’s notes about the XOR function). “Adjacent” can mean
immediately next to each other vertically or horizontally or via the boundaries, so that
square 101 is adjacent to square 001 on the above map because only one variable changes
in moving between them.

Exercise 3.1: Draw a K-map for the function F = ABC + A B C+ ABC + AB C and show that the function
can be minimised to F = AB+ B C

Exercise 3.2: Draw a K-map for the function F = A BC + ABC + ABC and show that the function can be
minimised to F = AB+ BC

C
AB

00 01

0

1

11 10

3C75 Electronics: Week 3: 2003/2004 3

3-3

Exercise 3.3: Minimise the two functions whose K-Maps are shown below

C
AB

00 01

0

1

11 10

1 1

10 1

0 1

0

C
AB

00 01

0

1

11 10

0 1

00 0

1 0

0

Exercise 3.4: Verify each of the minimisations in Exercises 3.1 to 3.3 directly using the Crocodile Clips
simulator.

Note: the greatest minimisation is achieved when using the fewest loops (since each loop
corresponds to a term in the final expression). So you should make each loop as large as
possible, simultaneously encompassing as many redundant variables as possible. It is
permissible for loops to overlap each other. See the next section for the full set of rules.

4-variable Karnaugh maps
By now you should be getting the hang of things. A 4-variable K-map is shown below.

AB
00 01

00

01

11 10

11

10

CD

The looping rules can be summarised as:
• Only adjacent squares can be looped, but that includes end squares.
• Terms can only be looped in groups of 2N where N is an integer (i.e. 2s, 4s, 8s...).
• The term resulting from a grouping of 2N has N less variables than the term it groups.
• Loops must only be rectangular, so when 4 squares are looped they must be a line of 4

or a square of 4, but watch out for the corners! – they can be linked too.
• The resulting function must account for all 1's whether they be looped or not.

3C75 Electronics: Week 3: 2003/2004 4

3-4

Exercise 3.4 Minimise the four functions whose K-Maps are shown below. For each function write out both
the canonical form and the minimised function. For the two lower functions verify each of the minimisations
directly using the Crocodile Clips simulator.

CD
AB

00 01

00

01

11 10

11

10

1 1 1

1

1

1

1

1

0 0

0

0 0

0

0

0

CD
AB

00 01

00

01

11 10

11

10

1

1

1

1

0 0

0

0

0

0

1

1

0

0 0

0

CD
AB

00 01

00

01

11 10

11

10

0

1

1

0

0 1

0

1

0

0

0

0

1

0 0

1

CD
AB

00 01

00

01

11 10

11

10

0

1

1

0

0 1

0

1

1

1

1

1

1

1

11

3.1.2 Basic K-map technique

A Karnaugh map or K-map is a way to write out the
truth table for a circuit which highlights ways in which
the circuit may be simplified. The inputs to the circuit
are shown along the sides of the map and the circuit
output states are specified on the map squares.
Importantly the input states must be written in an
order such that only a single variable at a time changes.
Then, if the circuit outputs a 1 for either value of a
variable, it makes no difference if it is changed and that
variable must be redundant for that minterm.

Such redundant variable are marked on a K-map by
looping them together and then identifying the logic
that selects that group. Clearly the bigger the group
the simpler the logic. For example, for the K-map
above we could simplify the logic as shown. This
predicts that

 F = AB + A C D + BCD + A B D
which is considerably simpler than the canonical
expression containing 8 minterms each with 4
variables. Getting the general idea of looping is fairly
straightforward, but ensuring that one has the
minimum logic is matter of some skill. Below we look
at some subtleties of the K-mapping technique.

CD
AB

00 01

00

01

11 10

11

10

1 1 1

1

1

1

1

1

0 0

0

0 0

0

0

0

CD
AB

00 01

00

01

11 10

11

10

1 1 1

1

1

1

1

1

0 0

0

0 0

0

0

0

3C75 Electronics: Week 3: 2003/2004 5

3-5

3.1.3 “Can’t Happen” states
In some applications, certain possible input patterns may never occur in practice for some
reliable external reason. For example, suppose a circuit has 4 inputs A, B, C, and D, which
represent in binary the numbers 0 to 9. Suppose also that for some reason it was not
possible for the codes corresponding to the number 10 to 15 to occur. (This is so with a
code known as Binary Coded Decimal or BCD.) In this case we do not care if the logic that we
write to deal with these particular inputs produces a logical 1 or a logical 0. Why don’t we
care? Because these inputs will never occur.

Conventionally one marks such states on a K-map with an X, and we can optionally include
these states in any loop if it will help to simplify our logic, i.e. we can take them as 1's or 0’s
at our convenience.

Example
Consider the K-map shown above but suppose that the
inputs AB = 10 never occur in practice. In this case we could
write the K-map as shown with Xs in the AB = 10 column.
We could now use a new looping which includes a larger
loop and hence a term with fewer variables. (Remember the
looping rules: 2N in squares or rectangles)

In this case the logic simplifies to

 F = A + A C D + BCD + A B D

which may be compared with the previous version

 F = AB + A C D + BCD + A B D

Notice that the new version has saved one AND gate.

Exercise 3.5 As out lined above, suppose a circuit has 4 inputs A , B , C,
and D, which represent in binary the numbers 0 to 9. The numbers 10 to
15 do not occur. Use a K-map to design logic which will produce an
output of 1 when and only when the input is 4, 5 or 6.

CD
AB

00 01

00

01

11 10

11

10

(Hint: Remember the procedure:
Truth Table ⇒ K-map ⇒ Logic)

CD
AB

00 01

00

01

11 10

11

10

1 1 1

1

1

1

1

1

0 0

0

0 X

X

X

X

CD
AB

00 01

00

01

11 10

11

10

1 1 1

1

1

1

1

1

0 0

0

0 X

X

X

X

 A B C D F
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

3C75 Electronics: Week 3: 2003/2004 6

3-6

3.1.4 Pulse Trains and Static Hazards
The inputs to logic circuits will obviously change with
time and cause the outputs of the circuits to switch also. A
static hazard is the term used to describe the possibility
that in switching between two desired states an undesired
state may occur transiently. Recall that as the inputs to a
circuit change the circuit will jump between its possible
output states. For example, on the K-map shown right,
changing the input from ABCD = 0100 to 1100 will cause
the circuit to switch as shown. The inputs to the circuit
may be represented as a function of time as shown.
Notice that both states should still give an output of 1, but
that the 1 derives from two different terms in the
expression for the logic, F = AB + A C D + BCD + A B D

If we examine the partial logic for the first two terms…

D

Then we see that as A makes a transition from 1 to 0 the output of the first AND gate X
goes from 1 to 0, while the output of the second AND gate Y goes from 0 to 1. Depending
on the delay times of the logic it is possible for both inputs to the OR gate to fall transiently
to zero, and hence the output F may fall to zero. Even though the spurious state may exist
for only a few nanoseconds, in some logic applications the consequences will be significant.

The difficulties of static hazards may be countered by adding in logic
which is in a strict sense “superfluous” but which prevents
dangerous transient states being entered into. For example, in this
case we can add an extra loop on the K map as shown (surrounding
the arrow ⇐). The OR gate partial logic for this additional loop is
BC D . The final OR gate now always has at least one 1 input and so
is in no danger of transiently giving 0 output.

DBABCDDCAABF +++=

Initially the
active term

Transition makes this
the active term

CD
AB

00 01

00

01

11 10

11

10

1 1 1

1

1

1

1

1

0 0

0

0 0

0

0

0

3C75 Electronics: Week 3: 2003/2004 7

3-7

3.1.5 XOR logic on a K-map

Some of you may now be becoming adept at spotting logical
patterns on a K-map. This section is just to point out that
XOR logic yields a particular pattern on a K-map. The pattern
to look for is a pair of diagonally linked 1 outputs. Clearly
one cannot loop these in the conventional manner, but using
XOR logic does succinctly provide the desired result. The
logic shown in this K-map can be achieved with two XOR
gates and an AND: () ()CADB ⊕⋅⊕

3.2 Using just one type of logic NAND and NOR
Frequently it is required to implement logical functions using just a single type of logic
gate, most commonly NAND or NOR. Last week many of you did this without bidding in
the exercises. The reasons for implementing logic using only one type of gate is generally
practical: its easier to stock (or to manufacture) only type of gate and to build up circuits
with identical “building blocks”. This technique is illustrated in the Exercise below.

Exercise 3.6
The NOT, AND and OR functions are shown here using only NAND gates. Verify that the operation of the
circuits shown is correct by constructing their truth tables.

NOT

AND

OR

Exercise 3.7 Using Crocodile Clips and the NAND gate boards, implement an XOR
function using only NAND gates.
[Note: this can be done using four NAND gates, but it requires insight to see how.]

CD
AB

00 01

00

01

11 10

11

10

0

0

1

0

0

0

0

1

1 0

0

1

00

0

0

