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3 Gaussian beams 

Gaussian beams

• A treatment based on rays cannot 
explain the spatial characteristics of laser   
beams. 

• A proper description can only be obtained 
by returning to the wave-equation and  
finding solutions matching the boundary 
conditions imposed by a laser cavity.  

• (Scalar) wave equation:

• Spherical waves emitted by a point source:
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• Assume the source is at z=z0 and look 
for a solution valid close to the z-axis

• Substituting into the formula for the 
spherical wave:

The term that gives the contribution to 
the phase resulting from the curvature of 
the wave-fronts is:

where R(z) = z-z0 is the radius of 
curvature of the wave-fronts at z
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• Mathematically, this solution is just as valid
if we set           , where b is assumed real
(It’s still a solution of the wave-equation)

The justification for doing this is that it 
turns out this is the solution we want.

With              we find:

This is a product of four factors. Examine 
each in turn.

• , just the usual plane-wave phase-
factor

ibz =0
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• ,  the most important term

(z-ib) is known as the complex 
radius of curvature (usually represented 
by q)

w(z) characterises the transverse width 
of the beam

at z=0

Hence
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Defining the Rayleigh range

we have

For z>>zR

And the divergence of the beam 
approaches a constant value: 

λ
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R(z) is the (real) radius of curvature of 
the wave-fronts at position z:

at z=0                  , a plane wave-front

at large z (z>> zR)               , as per a 
spherical wave
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So the Gaussian beam propagating to the 
right of z=0 has the form:

In z < 0, the beam profile is just the 
same:

Terminology: 
• The beam spot-size is the 1/e half-width   

(amplitude) at any point z.
• The beam waist, w0 is the spot-size at 

z=0.
• The beam has a waist at z=0.
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Gaussian beams and laser modes
• Which Gaussian beam represents a laser 

mode?

The one for which the wave-fronts 
match the curvatures of the cavity 
mirrors

e.g. Cavity with two curved mirrors

e.g. Cavity with one plane and one curved 
mirror

Laser beams have low divergence (usually) 
because the mirror parameters are 
chosen to give large zR.
Not all combinations of mirrors will do!

• Other terms in

•

• for large z, just the usual 1/u 
dependence of the amplitude, as 
expected for a spherical-wave.

But with a difference:

The contribution of this term to the 
phase of field is

There is an additional phase shift of  π
(compared to the plane-wave case), 
when passing through the beam waist, 
from             to             ,
the Guoy phase.
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•

for large z, we can neglect b and, for given 

r, the denominator gets smaller for 

increasing z.

This just means the intensity of the beam 

drops off more slowly with distance than 

does that of a spherical wave (because the 

beam is more confined).  
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E • How can we locate the position of the 
beam waist and it size?

We need to find 1/q, the reciprocal of the 
complex radius of curvature, since

Hence

So we can find the waist by setting 

or 

ibzq −=
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ABCD Law of Gaussian beams
• How is q affected by propagation 
through an optical system (which could be 
a laser cavity)?

As before, consider first a spherical 
wave, with a real radius of curvature, then 
transform to the complex case.

(paraxial approximation)

Hence

If at the entrance (exit) face of an 
optical system, r and a have the values r0, 
α0 (r1, α1 ) we find, using 
the system ray transfer matrix:

RRr αα ≈⋅=   tan    

α
R

r

rR
α

≈

DCR
BAR

DCr
BArrR

0

0

0

00

1

1
1 +

+
=

+
+

==
α
α

α

• For Gaussian beams, the role of R(z) for a 
spherical-wave is taken by q, the complex 
radius of curvature.

So q is transformed by an optical system 
according to:

where ABCD are the usual elements of the 
system ray transfer matrix.

This is known as the
ABCD-law of Gaussian beams.

To find the location and size of a beam 

waist, it is sometimes more useful to see 

how 1/q transforms:  
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Gaussian beams and lenses

• For the case of a spherical-wave we have, 
with the usual sign convention for the 
angles α0 and α1 :

NB - the radius of curvature of a Gaussian 

beam before a beam waist is negative

fRRfvu
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• Ray transfer matrix for a (thin) lens:

So ABCD-law gives                        

or

identical to the relation we found for an 
incident spherical-wave, but with R 
replaced by q.

However, with a Gaussian beam there are 
waists at the conjugate points, not point-
like focii:
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Focusing and spot-size
Lens of focal length f placed a distance d1
from the beam waist. Find the location and 
size of the waist after the lens.

At first waist

L.H.S. of lens

R.H.S. of lens
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Gaussian beams & laser cavity modes
The stability criterion for a laser cavity can be 
found using the ABCD-law.

If            is the ray transfer matrix 
for a complete round-trip (starting from any 
point in the cavity), we must have, for a stable 
mode:

Hence

Since                        , for a finite spot-size

the condition for a stable mode to exist is

For a cavity formed by mirrors with radii of 
curvature R1 and R2 separated by distance L
the condition is equivalent to
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Classes of laser cavity

The set of stable cavities can be 
represented as below on a plot of g1 versus 
g2 
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• Symmetric cavities (g1 = g2) 

The symmetry demands that the waist is at 
the centre of  the cavity.

We find for the waist and mirror spot 
sizes:

For the symmetric confocal cavity g = 0 
and so

• Typical magnitudes:

Laser beams generally have very low 
divergence.
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Higher-order transverse modes

• More general solutions of the wave-
equation can be written

where the solution can be identified as a 
TEMmn transverse  mode. w(z) and b are 
given by the same expressions as before.

Hn(x) is a Hermite polynomial with n nodes.

For m=n=0 we recover the TEM00 Gaussian 
beam.
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Mode-matching

• Efficient coupling of radiation in to a 
single transverse cavity mode, usually the 
TEM00 mode.

• Achieved by a using an external lens to 
produce a waist of the appropriate size at 
the appropriate location in the cavity.

Geometrical properties of laser light

• Directionality (pointing accuracy)
Fundamental limit to directionality is set 
by the beam divergence due to 
diffraction.

For a TEM00 Gaussian mode

with w0 the intra-cavity waist size.

The divergence generally increases for 
higher transverse modes but can be 
improved by beam collimation using a 
telescope:
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• Focusability

If a collimated beam of radius w0 is 

incident on a lens of focal length f we 

have for resulting waist size:

With              , the lens diameter, we get:

where F is the numerical aperture of the 

lens (             )

Typically,              so  
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• Brightness

Brightness is defined as the power 

emitted per unit area of a source per unit 

solid angle.

e.g. brightness of the solar surface:

Assume the radiation leaving the solar 

surface to be blackbody radiation in 

equilibrium at 6000K, having a peak 

wavelength around 600 nm and a spectral 

linewidth of 100 nm.

Starting from

the spectral energy density of black-body 

radiation.
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the irradiance (power emitted per unit 
area) at the suns surface is

Gives BG = 3.6 107 Wm-2 /2π sr

= 5.7 106 Wm-2 sr-1

Compare this with the brightness of a 

1mW helium-neon laser (λ=632nm) with a 

0.5mm intra-cavity waist.

Divergence of beam

Solid angle subtended by beam

Giving brightness 
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Example

• A HeNe laser consists of a symmetric, 
confocal cavity 15cm long between the 
inner mirror surfaces. 

The mirror substrates  are made of glass 
with refractive index 1.5 and are 1cm thick. 
The outer  surfaces are also curved, so 
that they can act as lenses to collimate the 
output beam (i.e. produce a waist at the 
laser output)

Find the radius of curvature  required for 
the outer mirror surfaces and the 
diameter of the output beam.
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Example

It is desired to mode-match a collimated 
laser beam into the lowest transverse 
mode of a symmetric confocal laser cavity 
of length 10cm  using a suitable thin lens.

If the laser wavelength is 1µm, and the 
initial beam has a diameter 2mm, what is 
the required focal length of the lens?


