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Chapter 1

Formal Aspects of Quantum
Theory

1.1 The Wave Function

• Consider a set of N particles with positions ~r1 · · · ~rN

• The wave function Ψ(~r1 · · · ~rN , t) is a complex function (it has both a real
and an imaginary part) of the coordinates of the particles (and time). It
contains all the information about the particles at time t.

• The fundamental property of the wave function is that it gives the proba-
bility of finding the particles in a given configuration. That is |Ψ(~r1 · · · ~rN , t)|2d~r1 · · · d ~rN

is the probability of finding particle 1 in volume d~r1 centred about ~r1 and
particle 2 in volume d~r2 centred about ~r2 etc., at a particular time t.

• We have used the notation |Ψ|2 = Ψ∗Ψ = Re{Ψ}2 + Im{Ψ}2

• d~r = dxdydz = r2dr sin θdθdφ

• This interpretation in terms of probability leads to the normalisation of
the wave function defined by

∫ |Ψ(~r1 · · · ~rN , t)|2d~r1 · · · d ~rN = 1. This just
means that the probability of finding the system in one of the allowed
configurations is one.

• Note that because it is the modulus squared of the wave function which
defines the physically observable properties, we can multiply the wave
function by a phase factor exp(iφ) without changing any of the results.

• Note that normalisation imposes a condition on allowed wave functions.
One particularly important wave function is not normalisable, namely a
plane wave (exp(i~k · ~r)). We can get around this problem by working
with a wave packet, in which the plane wave is multiplied by another
function which decays rapidly to zero for large distances, or we can use
box normalisation with periodic boundaries.

5
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Figure 1.1: Infinite square well
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• Other average properties of the particles are found by taking expectation
values. Consider the position of a particle:

〈xi〉 =
∫
|Ψ(~r1 · · · ~rN , t)|2xi dr1 · · · d ~rN (1.1)

• We will see later that in general we can write
∫

Ψ(~r1 · · · ~rN , t)∗Q̂Ψ(~r1 · · · ~rN , t) d~r1 · · · d ~rN = 〈Q〉 (1.2)

• where 〈Q〉 is the average measured quantity, and Q̂ is the corresponding
operator.

Example
• Consider an electron in a box with infinitely hard walls:

• Allowed wave functions are

Ψn(x) =

{ √
2
L sin(nπx

L ) 0 ≤ x ≤ L

0 Otherwise
(1.3)

• Normalisation leads to the following
∫ ∞

−∞
|Ψn(x)|2 dx =

2
L

∫ L

0

sin(
nπx

L
) sin(

nπx

L
) dx

=
2
L

∫ L

0

1
2
(1− cos(

n2πx

L
)) dx

= 1
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Figure 1.2: Probability distribution
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• The probability of finding a particle near x depends on the state

Pn(x) dx =
{

2
L sin2(nπx

L ) dx 0 ≤ x ≤ L
0 Otherwise (1.4)

1.2 Principle of Superposition
• In optics in the two slit experiment we have waves emanating from two

separate states that have a constant phase relationship, and thus produce
an interference pattern.

• In quantum mechanics we have the same effect. It is possible to have
two coherent sources of particles (for example electrons) that can interfere
with one another.

• This interference effect in both cases is produced by the superposition of
two coherent waves.

• In general to combine several wave functions for the same particle to pro-
duce a total wave function we must add the wave functions together.

• Consider our particle in a box

Ψn =

√
2
L

sin(
nπx

L
) exp(

Ent

i~
)

=

√
2
L

1
2i

[
exp(

inπx

L
)− exp(

−inπx

L
)
]

exp(
Ent

i~
)

= − i√
2L

exp(
inπx

L
) exp(

Ent

i~
) +

i√
2L

exp(− inπx

L
) exp(

Ent

i~
)

= Ψ+(x)−Ψ−(x)
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• The wave function for a particle in free space is

Ψfree(x) = N exp(ikx)

• When k > 0 the particle is moving to the right, and when k < 0 the
particle is moving to the left.

• Thus we can interpret our particle in a box as being in a state that is a
superposition of a left travelling and right travelling states, as you might
expect for a particle bouncing between two walls.

• This superposition produces interference effects

|Ψ|2 = |Ψ1 + Ψ2|2 = |Ψ1|2 + |Ψ2|2 + (Ψ∗1Ψ2 + Ψ∗2Ψ1)

• If we define the phase angles φ1 and φ2 by the equations Ψ1 = |Ψ1| exp(iφ1)
and Ψ2 = |Ψ2| exp(iφ2) then we get the following interference expression

|Ψ|2 = |Ψ1|2 + |Ψ2|2 + 2|Ψ1||Ψ2| cos(φ1 − φ2)

• This produces the standing wave pattern for the particles in the box.

1.3 Time Dependent Schroedinger Equation
• From the photoelectric effect we have E = hν and p = h/λ.

• De Broglie postulated that these expressions apply to all particles.

• If we write k = 2π/λ, ω = 2πν and ~ = h/2π then we can re-express these
as E = ~ω and p = ~k.

• We use plane waves (exp(i(kx− ωt)) to describe the propagation of elec-
tromagnetic waves in free space. We would like to identify this with
the wave function of the photon and hence of all free particles (Ψ(xt) =
N exp[i(kx− ωt)]).

• This function satisfies the following equations

i~
∂Ψ
∂t

= ~ωΨ = EΨ

−i~
∂Ψ
∂x

= ~kΨ = pΨ

• These equations provide the basic structure of quantum mechanics

– Observables are represented by operators

E → i~
∂

∂t

px → −i~
∂

∂x

– The state of the system is described by the wave function.
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• To determine wave functions for more general systems we need to extend
our ideas. The constraints we have are

– The equations need to be linear in Ψ so that we can make use of
superposition.

– They need to be linear in ∂
∂t so that we do not need to define any

derivatives of the wave function as part of our initial conditions (t =
0) since we wish to have the system completely defined by the wave
function.

– They should reproduce the results of classical mechanics in the limit
of large systems.

• We also have the quantum mechanical postulates. One way to put all this
together is the following

i~
∂Ψ
∂t

= ÊopΨ

• Here Êop is an energy operator motivated by classical mechanics and has
the form Êop = T̂op + V̂op where T̂op is the kinetic energy operator and V̂op

is the potential energy operator. But from classical mechanics we know
that T = p2/2M , and we already have an expression for the momentum
operator (p̂op = −i~ ∂

∂x ). Thus we propose the following equations of
motion for the wave function

i~
∂Ψ
∂t

= [− ~2

2M

∂2

∂x2
+ V (x)]Ψ

• This forms the heart of quantum dynamics. It is the quantum mechanical
equivalent of Newton’s second law of otion. It is, of course, Schroedinger’s
equation.

• The more precise, if abstract, form of the equation is ĤΨ = i~∂Ψ
∂t where

Ĥ is the Hamiltonian operator. The Hamiltonian is a version of the total
energy borrowed from classical mechanics which has the property that it
is constant throughout the motion of a system in the absence of external
time varying forces. Often it just equals the total energy, which is what
we assume here.

• In three dimensions, but still for one particle, the Schroedinger equation
becomes

i~
∂Ψ(x, y, z, t)

∂t
=

[
− ~2

2M
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
) + V (x, y, z)

]
Ψ(x, y, z, t)

• This can be written in a more compact form using the following notation

i~
∂Ψ(~r, t)

∂t
=

[
− ~2

2M
∇2 + V (~r)

]
Ψ(~r, t)
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• When the potential is independent of time we can make the following very
useful separation Ψ(~r, t) = Φ(~r)Θ(t). If we substitute this product into
Schroedinger’s equation we obtain the following

1
Θ(t)

i~
∂Θ(t)

∂t
=

1
Φ(~r)

[
− ~2

2M
∇2 + V (~r)

]
Φ(~r)

• Since the left-hand side depends only on time, and the right-hand side
depends only on position, both sides must be equal to a constant which
we shall call E. We can then separate our one equation into two equations.

[
− ~2

2M
∇2 + V (~r)

]
Φ(~r) = EΦ(~r)

i~
∂Θ(t)

∂t
= EΘ(t)

• The first of these equations is the time independent Schroedinger equation.

• The second of these equations we can solve immediately Θ(t) = exp(Et/i~).

• We can now form a general solution to the time dependent Schroedinger
equation by using the principle of superposition.

• Let us index the allowed values of E by n (E ∈ {En}). Then we have the
following expansion Ψ(~r, t) =

∑
n CnΦn(~r) exp(Ent/i~). Cn is a constant

coefficient.

• The coefficients Cn are determined from the wave function at time t = 0
(Ψ(~r, 0) =

∑
n CnΦn(~r)). As we will prove later we have the following

condition
∫

Φ∗m(~r)Φn(~r) d~r = δnm where δnm is the Kroenecker δ-function
given by

δnm =
{

0 n 6= m
1 n = m

• Hence we can obtain the coefficients
∑

n Cn

∫
Φ∗m(~r)Φn(~r) d~r = Cm =∫

Φ∗m(~r)Ψ(~r, 0) d~r.

Example
• In free space we have no potential. Thus the Hamiltonian contains only

the kinetic energy.

• Our one-dimensional Schroedinger equation is thus i~∂Ψ
∂t = − ~2

2M
∂2Ψ
∂x2 . If

we make a separation of variables we obtain 1
Θ(t) i~

∂Θ(t)
∂t = 1

Φ(x)

[
− ~2

2M
∂2Φ(x)

∂x2

]
=

E. If we define E = ~ω = p2/2M , and p = ~k then we obtain Ψ(x, t) =
N exp(−i[ωt± kx]), which should now all look familiar.

• To produce the general wave function we construct the sum of individ-
ual terms. However in this case we have a continuum of energy levels
allowed, since the wave vector k can have any real value. Therefore
we must replace our sum by an integral. We therefore have Ψ(x, t) =∫

dk c(k) exp(−i[ω(k)t− kx]).

• We obtain the expansion coefficients from the equation Ψ(x, 0) =
∫

dk c(k) exp(ikx).
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Figure 1.3: Spread of gaussian wavepacket
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Example
• There is a second solution to the Schroedinger equation for a free particle

which corresponds to what is called a wave packet. To find this solution
we will write down its form and show that it satisfies the Schroedinger
equation.

• The trial wave function is

Ψ(x, t) = N
1√

1 + αt
f

(
β

(x/σ)2

1 + αt

)

• In order to substitute this into the Schroedinger equation we need the
following derivatives

∂Ψ
∂t

= N

(
−α/2√
(1 + αt)3

f − αβ(x/σ)2√
(1 + αt)3

f ′
)

∂2Ψ
∂x2

= N

(
2β/σ2

√
(1 + αt)3

f ′ +
4β2x2/σ4

√
(1 + αt)5

f”

)

• Schroedinger’s equation is satisfied provided the following conditions hold
true: f(y) = f ′(y) = f”(y) = exp(y), β = − 1

4 and α = i~/2Mσ2. If these
conditions are satisfied then we have

Ψ(x, t) = N exp
[
−1

4
(x/σ)2

1 + i~t/2Mσ2

]
1√

1 + i~t/2Mσ2

• Let us introduce a timescale into this problem τ = 2Mσ2/~. For an
electron, assuming σ ≈ 10−10m, this will have a value of about 10−16s.
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We can then rewrite our wave function as

Ψ(x, t) = N exp
[
−1

4
(x/σ)2

1 + it/τ

]
1√

1 + it/τ

• From this we are able to calculate the probability density function which
is

|Ψ(x, t)|2 = N2 exp
[
−1

2
(x/σ)2

1 + (t/τ)2

]
1√

1 + (t/τ)2

• When the time is much greater than our timescale (t >> τ) we get

|Ψ(x, t)|2 ≈ N2 τ

t
exp

[
−1

2

(
x

σt/τ

)2
]

• If we define the effective width of our wave packet by σ∗(t) = σt/τ , then
we see that the wave packet is spreading with a constant speed of about
106m/s.

1.4 Expectation Values

• If you perform an experiment many times and measure some quantity
which we will call Q (for example position or momentum) each time, then
you can find an average value

〈Q〉 =
1
N

N∑

i=1

Qi

• 〈Q〉 can also be calculated from the quantum mechanical operator Q̂ (x̂,
p̂x = −i~ ∂

∂x , etc.) for this observable and the wave function. In this case
it is referred to as an expectation value and is given by:

〈Q〉 =
∫

Ψ∗(~r)Q̂Ψ(~r) d~r

• This will be elaborated upon later.

• Note that this is an average value. What you obtain from any one given
experiment will in general differ from this.

• Once again consider a particle in a box with infinitely hard walls for which
the wave functions are given by:

Ψn(x) =

{ √
2
L sin(nπx

L ) 0 ≤ x ≤ L

0 Otherwise
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• The expectation value of position is

〈x〉n =
2
L

∫ L

0

sin(
nπx

L
)x sin(

nπx

L
) dx

=
2
L

∫ L

0

1
2
[x− x cos(

2nπx

L
)] dx

=
L

2

• On average we will find a particle in the middle of the box. The expecta-
tion value of the momentum is

〈p〉n =
2
L

∫ L

0

sin(
nπx

L
)(−i~

∂

∂x
) sin(

nπx

L
) dx

=
2
L

(−i~
nπ

L
)
∫ L

0

sin(
nπx

L
) cos(

nπx

L
) dx

= 0

• The particle is equally likely to be travelling to the right or to the left, as
it is bouncing between two walls.

• Expectation values can behave like classical variables. The Ehrenfest equa-
tions are interesting example

m
d〈x〉
dt

= 〈p〉
d〈p〉
dt

= −〈∂V

∂x
〉

• These results will be proven later.

1.5 Hermitian Operators
• An operator acts on a function to modify that function:

Ôf(~r) = g(~r)

• For example, the derivative operator (Ô = d
dx ) acting on the function

f(x) = sin x:

Ôf(x) =
d
dx

sin x

= cos x

• Linear operators obey the following relation L̂(αψ + βφ) = αL̂ψ + βL̂φ.

• Operators corresponding to physical observables are hermitian.

• Now consider integrals of the form
∫

Ψ∗(~r)ÔΦ(~r) d~r. We define the her-
mitian conjugate of Ô to be Ô† where

∫
Ψ∗(~r)Ô†Φ(~r) d~r =

∫
ˆ(OΨ(~r))∗Φ(~r) d~r
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• Hermitian operator satisfies Ô† = Ô. That is
∫

Ψ∗(~r)Ô†Φ(~r) d~r =
∫

ˆ(OΨ(~r))∗Φ(~r) d~r

=
∫

Ψ∗(~r)(ÔΦ(~r)) d~r

The operator can act on either wave function and give the same result.

• Consider two operators
∫

Ψ∗(~r)(ÂB̂)†Φ(~r) d~r =
∫

(ÂB̂Ψ(~r))∗Φ(~r) d~r

=
∫

(B̂Ψ(~r))∗(Â†Φ(~r)) d~r

=
∫

Ψ(~r)∗B̂†(Â†Φ(~r)) d~r

⇒ (ÂB̂)† = B̂†Â†

• The expectation values of hermitian operators are always real

(
∫

Ψ∗ÂΨ d~r)∗ =
∫

ΨÂ∗Ψ∗ d~r

=
∫

Ψ(ÂΨ)∗ d~r

=
∫

Ψ∗Â†Ψd~r

=
∫

Ψ∗ÂΨd~r

• If a number equals its complex conjugate, then it must be real.

Example
• Consider the position operator x̂ which satisfies x̂f(x) = xf(x):

∫
Ψ∗(~r)x̂†Φ(~r) d~r =

∫
(x̂Ψ(~r))∗Φ(~r) d~r

=
∫

(xΨ(~r))∗Φ(~r) d~r

=
∫

Ψ(~r)∗xΦ(~r) d~r

=
∫

Ψ(~r)∗x̂Φ(~r) d~r

• Now consider the momentum operator −i~ ∂
∂x . This also is hermitian:

∫
Ψ(x)∗(−i~

∂

∂x
)Φ(x) dx = −i~

[
Ψ(x)∗Φ(x)−

∫
∂

∂x
Ψ(x)∗Φ(x) dx

]

=
∫ (

−i~
∂

∂x
Ψ(x)

)∗
Φ(x) dx
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• In the first line we have used integration by parts. In the second line we
have assumed that at infinity the wave functions decay to zero.

1.6 Eigenstates

• We can ask the question: is there a state that produces one, and only
one, value for measurements of a particular observable? Mathematically,
we want a state that produces a particular expectation value for that
observable, and for which the standard deviation of the measurements is
zero. That is, 〈A〉 = µ and 0 =

∫
Ψ∗(Â − µ)2Ψd~r. For an hermitian

operator this produces the following

0 =
∫

Ψ∗(Â− µ)2Ψd~r

=
∫

Ψ∗(Â− µ)(Â− µ)Ψd~r

=
∫

[(Â− µ)Ψ]∗(Â− µ)Ψd~r

=
∫
|(Â− µ)Ψ|2 d~r

• Because the integrand is positive definite, it must be the case that ÂΨ =
µΨ. This is an eigenequation.

• We can generalise the above and say that eigenstates correspond to the
value measured in individual experiments (in contrast to expectation val-
ues which are averages over many experiments).

• Eigenstates are properties of operators and are defined by the equation

Ôfλ = λfλ

• where fλ is an eigenfunction, and λ is a scaler, the eigenvalue.

• An operator will in general have many eigenfunctions with corresponding
eigenvalues.

Example

• Considered the momentum operator

i~
∂

∂x
fλ(x) = λfλ(x)

fλ(x) = A exp(λx/i~)

• Thus eigenfunctions of the momentum operator are complex exponentials
(or plane waves).

• Note that in this example that are no constraints on the value of λ.



16 CHAPTER 1. FORMAL ASPECTS OF QUANTUM THEORY

• Hermitian operators have the very important property that all their eigen-
values are real. This is necessary if they are to correspond to physical
observables.

• Let Ĥ be an hermitian operator which satisfies the following eigenequation
Ĥfλ = λfλ. We shall now prove that its eigenvalues are real:

∫
f∗λĤfλ d~r = λ

∫
f∗λfλ d~r

∫
fλĤ∗f∗λ d~r = λ∗

∫
f∗λfλ d~r

• The second line is just the complex conjugate of the first line. Since Ĥ is
hermitian:

∫
fλĤ∗f∗λ d~r =

∫
(Ĥfλ)∗fλ d~r =

∫
f∗λĤ†fλ d~r =

∫
f∗λĤfλ d~r

• Therefore λ∗ = λ, and therefore the eigenvalues is real.

• The eigenfunctions of hermitian operators have the property that two
different eigenfunctions are orthogonal to one another:

∫
f∗1 f2 d~r = 0. To

prove this considered to different eigenstates of the same operator

Ĥf1 = λ1f1

Ĥf2 = λ2f2

• This allows us then to write the following integrals
∫

f∗2 Ĥf1 d~r = λ1

∫
f∗2 f1 d~r

∫
f∗1 Ĥf2 d~r = λ2

∫
f∗1 f2 d~r

• We now take the complex conjugate of the second equation, while recalling
that the eigenvalues are real

∫
f1Ĥ

∗f∗2 d~r = λ2

∫
f∗2 f1 d~r

• If we now make use of the fact that the operator is hermitian we get from
above

λ2

∫
f∗2 f1 d~r =

∫
(Ĥf1)f∗2 d~r = λ1

∫
f∗2 f1 d~r

• Hence we get (λ1 − λ2)
∫

f∗2 f1 d~r = 0, which means either the eigenvalues
are the same, which is not the case by construction, or that the eigenfunc-
tions are orthogonal.

• If it turns out that two eigenvalues are in fact the same (the states are
degenerate), we can form linear combinations of the corresponding eigen-
functions which will also satisfy the eigenequation. We can choose those
linear combinations such that they are orthogonal to each other. There-
fore, all eigenfunctions are orthogonal to one another.
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Example
• Once again we will consider the Hamiltonian for a particle in a box with

infinitely hard walls

Ĥ = − ~
2

2m

∂2

∂x2
+ Vbox(x)

• Inside the box potential is 0, and so we have

− ~
2

2m

∂2Φn(x)
∂x2

= EnΦn(x)

• This has the eigenvalues and eigenfunctions

Φn(x) =

{ √
2
L sin(nπx

L ) 0 ≤ x ≤ L

0 Otherwise

En =
~2

2m
(
nπ

L
)2

• We see that En is real for all n.The wave functions are also orthonormal:

Onm =
∫

Φ∗n(x)Φm(x)dx

=
2
L

∫ L

0

sin(
nπx

L
) sin(

mπx

L
) dx

=
1
L

∫ L

0

[
cos

(
(n−m)πx

L

)
− cos

(
(n + m)πx

L

)]
dx

=
{

0 n 6= m
1 n = m

1.7 Expansion Postulate and Complete Sets of
Eigenfunctions

• Suppose we have two Hamiltonians that are different, but they operate in
the same space. For example we could have a particle in a box, and another
particle in a similar box but which has a sloping floor. That is, in both
cases we need to find a wave function for one particle in one dimension
over the same range of positions. What distinguishes the two cases is just
the shape of the potential. We thus solve very similar equations for the
two cases, but they have different eigenfunctions:

Ĥ1Φ(1)
n = E(1)

n Φ(1)
n

Ĥ2Φ(2)
n = E(2)

n Φ(2)
n

• But because they operate in the same space we can expand one set of
eigenfunctions in terms of the other. This is analogous to choosing a
different set of axes to define coordinates. Thus we can write:

Φ(2)
n (x) =

∑
m

cnmΦ(1)
m (x)
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• The coefficients Cmn can be determined by making use of the orthonor-
mality of the eigenfunctions:

∫
Φ(1)∗

p (x)Φ(1)
q (x) dx = δpq

• Thus we get:
∫

Φ(1)∗
p (x)Φ(2)

n (x) dx =
∑
m

cmn

∫
Φ(1)∗

p (x)Φ(1)
m (x) dx

=
∑
m

cnmδpm

= cnp

• The expansion is exact in this case if we include all the eigenfunctions.

• An alternative way of generating a set of eigenfunctions is to consider the
same system twice, but consider two different operators. This reveals more
about the nature of expectation values.

• Consider the following

Ôfn = λnfn

Φ(x) =
∑
m

cmfm(x)

cm =
∫

f∗mΦdx

• Where Φ is the wave function that we are interested in. The expectation
value of the operator is then given by

〈O〉 =
∫

Φ∗ÔΦ dx

=
∑
mn

∫
cmf∗mÔcnfn dx

=
∑
mn

cmcn

∫
f∗mλnfn dx

=
∑
mn

cmcnλnδmn

=
∑

n

|cn|2λn

• Thus we can interpret |cn|2 = | ∫ Φ∗fndx|2 as the probability of measuring
the physical quantity associated with the operator Ô and finding that it
has a value λn.

• There is an important property of orthogonal functions that makes the use
of expansions very robust for practical calculations. Suppose we were only
allowed to use a fraction of the total number of functions to approximate
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our wave function Ψ ≈ ∑N
n=1 γnΦn. We now try to find the best possible

set of coefficients:

R =
∫
|Ψ−

∑
n

γnΦn|2 d~r

∂R

∂γ∗m
=

∫
Φ∗m(Ψ−

∑
n

γnΦn) d~r = 0

∫
Φ∗mΨd~r = γm = cm

• Thus the best possible coefficients for a finite sequence are identical to
those for the full expansion.

1.8 Compatible Observables
• An observable corresponds to an eigenvalue of an hermitian operator

(ÔΨλ = λΨλ).

• Compatible observables share eigenfunctions:

ÂΨ = aΨ
B̂Ψ = bΨ

1.9 Simultaneous Measurement
Once a wave function collapses due to a measurement, and so enters an eigen-
state, you can extract all the eigenvalues of simultaneous observables without
disturbing the wave function further.

1.10 Commuting Operators
• We define a commutator by the following equation

[Â, B̂] = ÂB̂ − B̂Â

Example
• We will consider the commutator between the position and momentum

operators.

Â = x̂

B̂ = p̂x = −i~
∂

∂x

[Â, B̂]Ψ = ÂB̂Ψ− B̂ÂΨ
[x̂, p̂x]Ψ = x̂p̂xΨ− p̂xx̂Ψ

= x̂(−i~
∂

∂x
)Ψ− (−i~

∂

∂x
)(xΨ)

= i~(−x
∂Ψ
∂x

+ Ψ + x
∂Ψ
∂x

)
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= i~Ψ
[x̂, p̂x] = i~

• We now make the connection between commuting operators and simulta-
neous observables.

• Suppose we have the following

ÂΨn = anΨn

B̂Ψn = bnΨn

Ψ =
∑

n

cnΨn

• We then obtain the following result

[Â, B̂]Ψ = (ÂB̂ − B̂Â)Ψ

=
∑

n

cn(ÂB̂ − B̂Â)Ψn

=
∑

n

cn(Âbn − B̂an)Ψn

=
∑

n

cn(anbn − bnan)Ψn

= 0

• If [Â, B̂] = 0, the operators are said to commute.

• Thus we see that simultaneous observables will have quantum mechanical
operators that commute.

Example
• Consider a free particle. The Hamiltonian operator in this case is Ĥ =
−p̂2/2M .

• Now consider the commutator between the Hamiltonian and the momen-
tum operator

[Ĥ, p̂] = Ĥp̂− p̂Ĥ

= − 1
2M

(p̂3 − p̂3)

= 0

• Thus the wave functions for this Hamiltonian are also eigenstates of the
momentum operator. Thus a free particle has a well-defined momentum.

1.11 The Generalised Uncertainty Relations
• The uncertainty principle relates to two sets of repeated measurements

on the same system. In one set we measure one quantity (for example
position), while in the other set we measure another quantity (for example
momentum).
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• For each set we can calculate a mean value and a standard deviation. Let
the mean values be 〈A〉 and 〈B〉 and let the standard deviations be σA

and σB .

• In classical mechanics it is possible in theory to perform measurements for
which σA and σB are both arbitrarily small. That is, the system can have
unique values of both A and B.

• In quantum mechanics there are pairs of observables (for example position
and momentum) for which this is not true.

• Variables for which this is not true, have corresponding quantum operators
that fail to commute. We have already seen that [x̂, p̂x] = i~.

• We can now put this on a proper mathematical footing. Let the two op-
erators corresponding to the two observables be Â and B̂, and let them
satisfy [Â, B̂] = i~. We then have the following definitions of the expecta-
tion values and variances

〈A〉 =
∫

Ψ∗ÂΨdx

〈B〉 =
∫

Ψ∗B̂Ψdx

σ2
A =

∫
Ψ∗(Â− 〈A〉)2Ψdx =

∫
((Â− 〈A〉)Ψ)∗(Â− 〈A〉)Ψ dx

σ2
B =

∫
Ψ∗(B̂ − 〈B〉)2Ψdx =

∫
((B̂ − 〈B〉)Ψ)∗(B̂ − 〈B〉)Ψdx

• Let us now define

a(x) = (Â− 〈A〉)Ψ(x)
b(x) = (B̂ − 〈B〉)Ψ(x)

• We then get

σ2
A =

∫
|a(x)|2 dx

σ2
B =

∫
|b(x)|2 dx

• Let us now define a new function χ(x) = a(x)/σA − eiαb(x)/σB .

• Clearly this function satisfies the following inequality
∫ |χ(x)|2 dx ≥ 0.

We therefore obtain the following

0 ≤
∫

(a∗(x)/σA − e−iαb∗(x)/σB)(a(x)/σA − eiαb(x)/σB) dx

≤ 1
σ2

A

∫
|a(x)|2 dx +

1
σ2

B

∫
|b(x)|2 dx− 1

σAσB

∫
[a∗(x)b(x)eiα + b∗(x)a(x)e−iα] dx

≤ 1 + 1− 1
σAσB

∫
[a∗(x)b(x)eiα + b∗(x)a(x)e−iα] dx
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σAσB ≥ 1
2

∫
[a∗(x)b(x)eiα + b∗(x)a(x)e−iα] dx

≥ 1
2
[eiα

∫
Ψ∗(x)(Â− 〈A〉)(B̂ − 〈B〉)Ψ(x) dx +

e−iα

∫
Ψ∗(x)(B̂ − 〈B〉)(Â− 〈A〉)Ψ(x) dx]

• If we let eiα = −i, then we obtain

σAσB ≥ −i
2

∫
Ψ∗(x)[(Â− 〈A〉), (B̂ − 〈B〉)]Ψ(x) dx

≥ −i
2

∫
Ψ∗(x)[ÂB̂ − Â〈B〉 − 〈A〉B̂ + 〈A〉〈B〉 − B̂Â + 〈B〉Â + B̂〈A〉 − 〈B〉〈A〉]Ψ(x) dx

≥ −i
2

∫
Ψ∗(x)[Â, B̂]Ψ(x) dx

≥ ~
2

• The wave function with the smallest combined uncertainty (σAσB = ~/2)
satisfies the equation χ(x) = 0. Therefore it satisfies a(x)/σA+ib(x)/σB =
0.

Example
• If we choose our operators to be the position and momentum operators

then the equation we have to solve is
[(

x− 〈x〉
σx

)
+

(
~ ∂

∂x − i〈p〉
σp

)]
Ψ(x) = 0

• The solution to this equation is the following

Ψ(x) = N exp

[
ix〈p〉
~

−
(

x− 〈x〉
2σx

)2
]

• This is a Gaussian wave packet. It forms one possible link with classical
mechanics.

1.12 Dirac Notation
• This is a very convenient notation that achieves two things

1. It allows us to represent integrals in a compact fashion

2. It allows us to write quantum mechanics in a more abstract, and
hence general, fashion.

• This is achieved by thinking of functions as vectors in an abstract space,
and integrals as dot products.
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• Consider the following integral
∫

Ψ∗Φd~r. In Dirac notation we would
write this as 〈Ψ|Φ〉.

• The quantity 〈Ψ| is called a bra, and |Φ〉 is called a ket. Think bra-c-ket.
Note that these exist in different spaces (they are complex conjugates of
one another), so cannot be added to each other.

• The absence of explicit coordinates is what allows us to be more abstract.

• We immediately have the following result 〈Ψ|Φ〉 = 〈Φ|Ψ〉∗.
• If 〈Ψ|Φ〉 = 0 then |Φ〉 and Ψ〉 are orthogonal.

• We have the following relations between bras and kets:

|Φ〉 = |a〉+ |b〉 ⇒ 〈Φ| = 〈a|+ 〈b|
c|a〉 = |a〉c ⇒ c∗〈a| = 〈a|c∗

|Φ〉 = c1|a〉+ c2|b〉 ⇒ 〈Φ| = c∗1〈a|+ c∗2〈b|
Â|Φ〉 ⇒ 〈Φ|Â†

|a〉+ |b〉 = |b〉+ |a〉 ⇒ 〈a|+ 〈b| = 〈b|+ 〈a|
|a〉+ (|b〉+ |c〉) = (|a〉+ |b〉) + |c〉 ⇒ 〈a|+ (〈b|+ 〈c|) = (〈a|+ 〈b|) + 〈c|

c(|a〉+ |b〉) = c|a〉+ c|b〉 ⇒ c∗(〈a|+ 〈b|) = c∗〈a|+ c∗〈b|
〈c|(|a〉+ |b〉) = 〈c|a〉+ 〈c|b〉 ⇒ (〈a|+ 〈b|)|c〉 = 〈a|c〉+ 〈b|c〉

• What is the meaning of |a〉〈b|? Now |a〉〈b|p〉 is a ket (|a〉) multiplied by a
number (〈b|p〉), which is another ket. Thus the action of |a〉〈b| on a ket is
to generate another ket. Thus |a〉〈b| is a linear operator.

• |a〉〈b| also operates on bras: 〈p′| = 〈p|a〉〈b|.
• The expectation value of an operator Â is written:

∫
Ψ∗ÂΨd~r = 〈Ψ|Â|Ψ〉

∫
(ÂΨ)∗Ψd~r = 〈Ψ|Â†|Ψ〉

• We can extend our use of the notation to eigenequations Â|Φn〉 = an|Φn〉.
Here |Φn〉 is an abstract representation of an eigenfunction.

• We can write expansions for functions in the following way: |Ψ〉 =
∑

n cn|Φn〉.
• This can be very convenient. For example

〈Ψ|Â|Ψ〉 =
∑
nm

(c∗n〈Φn|)Â(cm|Φm〉)

=
∑
nm

c∗ncm〈Φn|Â|Φm〉

=
∑
nm

c∗ncm〈Φn|am|Φm〉
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=
∑
nm

c∗ncmam〈Φn|Φm〉

=
∑
nm

c∗ncmamδnm

=
∑

n

|cn|2an

• We can use this result to produce a very convenient way to represent oper-
ators. First we notice the following: 〈Φn|Ψ〉 =

∑
m cm〈Φn|Φm〉 = cn. This

allows us to write our expectation value as 〈Ψ|Â|Ψ〉 =
∑

n〈Ψ|Φn〉an〈Φn|Ψ〉.
This suggests that we can represent our operator by

Â =
∑

n

|Φn〉an〈Φn|

• There is an important special case of this, which is the unit operator.
For this operator all the eigenvalues are equal to 1. This use of the unit
operator is called inserting a complete set of states. To see this consider
the following two states:

|Ψ〉 =
∑

n

cn|Φn〉

|χ〉 =
∑

n

dn|Φn〉

〈Ψ|χ〉 =
∑
mn

c∗ndm〈Φn|Φm〉

=
∑

n

c∗ndn

• But cn = 〈Φn|Ψ〉 and dn = 〈Φn|χ〉. Hence we can write

〈Ψ|χ〉 = 〈Ψ|(
∑

n

|Φn〉〈Φn|n)|χ〉

• This is an example of the insertion of a complete set of states.

1.13 Matrix Representation of States and Oper-
ators

• As we have seen, we are able to represent wave functions as sums over
complete sets of states. The matrix notation allows us to exploit this fact
more easily.

• Consider a wave function Ψ and an operator Â. We can define the function
χ by χ = ÂΨ.

• We can now introduce the complete set of states {Φn}. We can expand
our previous two functions in this set of states giving

Ψ =
∑

n

Φncn
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χ =
∑

n

Φndn

• We can then combine these equations to produce
∑

n Φndn =
∑

n ÂΦncn.

• We can now perform some integrals on this equation to produce the fol-
lowing expression:

∑
n

∫
Φ∗mΦn d~r dn =

∑
n

∫
Φ∗mÂΦn d~r cn.

• We can of course write this using Dirac notation
∑

n〈Φm|Φn〉 dn =
∑

n〈Φm|Â|Φn〉 cn.

• If the set of states is orthonormal then we obtain the following result
dm =

∑
n〈Φm|Â|Φn〉 cn.

• We can think of 〈Φm|Â|Φn〉 as a matrix element, which we can represent
as Amn. Thus we have dm =

∑
n Amncn, which in matrix notation we can

write as ~d = A~c.

• In this notation eigenequations become A~cn = λn~cn. This is the approach
normally used to perform quantum mechanics on a computer.

• The time dependent Schrodinger equation can also be written in this form:

ĤΨ(~rt) = i~
∂Ψ(~rt)

∂t

Ψ(~rt) =
∑

n

cn(t)Φn(~r)

Ĥ
∑

n

cn(t)Φn(~r) = i~
∂

∂t

∑
n

cn(t)Φn(~r)

∑
n

cn(t)
∫

Φ∗m(~r)ĤΦn(~r) d~r =
∑

n

i~
∂cn(t)

∂t

∫
Φ∗m(~r)Φn(~r) d~r

∑
n

Hmncn(t) = i~
∂cm(t)

∂t

Hmn =
∫

Φ∗m(~r)ĤΦn(~r) d~r

H~c = i~
∂~c

∂t

• Matrix elements of the hermitian conjugate of an operator has the follow-
ing property

∫
Φ∗nÂ†Φm d~r =

∫
(ÂΦn)∗Φm d~r

=
(∫

Φ∗mÂΦn d~r

)∗

A†nm = A∗mn

• Therefore matrix elements of hermitian operators obey the condition A†nm =
Anm = A∗mn.
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• Inner products and overlaps of wave functions are easy to evaluate

Ψ =
∑

n

Φncn

χ =
∑

n

Φndn

∫
Ψ∗χd~r =

∑
nm

c∗ndm

∫
Φ∗nΦm d~r

=
∑

n

c∗ndn

= ~c∗ · ~d

1.14 Time Evolution of Operators

• Schroedinger’s equation gives us the time evolution of the wave function.
Operators (such as those for position and momentum) have no time de-
pendence. However, their expectation values do

〈A(t)〉 = 〈Ψ(t)|Â|Ψ(t)〉
Ĥ|Ψ(t)〉 = i~

∂

∂t
|Ψ(t)〉

• In the Heisenberg picture we turn this round, and let the operators vary
in time, keeping the wavefunction constant.

• The two approaches must yield the same expectation values. Let us look
at the rate of change of this expectation value

d
dt
〈A(t)〉 = 〈 ∂

∂t
Ψ(t)|Â|Ψ(t)〉+ 〈Ψ(t)|∂Â

∂t
|Ψ(t)〉+ 〈Ψ(t)|Â| ∂

∂t
Ψ(t)〉

=
∫

∂Ψ∗(t)
∂t

ÂΨd~r +
∫

Ψ∗(t)
∂Â

∂t
Ψ(t) d~r +

∫
Ψ∗Â

∂Ψ(t)
∂t

d~r

=
∫

(
1
i~

ĤΨ(t))∗ÂΨ(t) d~r +
∫

Ψ∗(t)
∂Â

∂t
Ψ(t) d~r +

∫
Ψ∗(t)Â(

1
i~

ĤΨ(t)) d~r

=
1
i~

∫
[−(ĤΨ(t))∗ÂΨ(t) + Ψ∗(t)

∂Â

∂t
Ψ(t) + Ψ∗(t)ÂĤΨ(t)] d~r

=
1
i~

∫
[−Ψ∗(t)ĤÂΨ(t) + Ψ∗(t)

∂Â

∂t
Ψ(t) + Ψ∗(t)ÂĤΨ(t)] d~r

=
1
i~

∫
Ψ∗(t)[Â, Ĥ]Ψ(t) d~r +

∫
Ψ∗(t)

∂Â

∂t
Ψ(t) d~r

• Heisenberg suggested that we treat the wave function as constant in time,
and allow the operators to be time varying:

〈A(t)〉 = 〈Ψ(0)|Â(t)|Ψ(0)〉
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• Let us write |Ψ(t)〉 = Û(t)|Ψ(0)〉. Then 〈A(t)〉 = 〈Ψ(0)|Û†(t)ÂÛ(t)|Ψ(0)〉 =
〈Ψ(0)|Â(t)|Ψ(0)〉, and hence

Â(t) = Û†(t)ÂÛ(t)

• The equation of motion is thus

dÂ(t)
dt

= Û†(t)

(
1
i~

[Â, Ĥ] +
∂Â

∂t

)
Û(t)

=
1
i~

[Â(t), Ĥ(t)] + Û†(t)
∂Â

∂t
Û(t)

Examples
1. The Hamiltonian is time invariant

Â = Ĥ

dĤ(t)
dt

=
1
i~

[Ĥ(t), Ĥ(t)] = 0

⇒ Ĥ(t) = Ĥ(0)

Thus the Schroedinger and Heisenberg Hamiltonians are the same.

2. The time rate of change of position is velocity

Â = x̂

Ĥ =
p̂2

2m
+ V̂

dx̂

dt
=

1
i~

[x̂,
p̂2

2m
+ V̂ ]

=
1
i~

[x̂,
p̂2

2m
] +

1
i~

[x̂, V̂ ]

[x̂, f(x̂)] = 0
dx̂

dt
=

1
i~

[x̂,
p̂2

2m
]

=
1
i~

1
2m

(x̂p̂2 − p̂2x̂)

=
1
i~

1
2m

([x̂, p̂]p̂ + p̂[x̂, p̂])

[x̂, p̂] = i~
dx̂

dt
=

p̂

m

• Compare this last result with the classical expression p = mdx/dt.

3. The rate of change of momentum equals the force:

Â = p̂

dp̂

dt
=

1
i~

[p̂,
p̂2

2m
+ V̂ ]

=
1
i~

[p̂,
p̂2

2m
] +

1
i~

[p̂, V̂ ]

=
1
i~

[p̂, V̂ ]
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• If we work in a position representation then we have p̂ = −i~ ∂
∂x . And

hence we get

dp̂

dt
= −[

∂

∂x
, V (x)]

= −(
∂V

∂x
+ V

∂

∂x
− V

∂

∂x
)

= −∂V

∂x

• Compare this with the classical expression dp/dt = F = −dV/dx.

1.15 Step-Operator Approach to Harmonic Os-
cillator

• Let us begin by recalling the standard way of finding the eigenstates for
an harmonic oscillator.

[− ~
2

2m

∂2

∂x2
+

1
2
kx2]Ψn(x) = EnΨn(x)

En = λn~ω
ω2 = k/m

ξ = αx

α2 = mω/~
d2Ψn

dξ2
+ (λn − ξ2)Ψn = 0

• We now consider the limit of very large displacements

lim
ξ→∞

Ψn = 0 ⇒ lim
ξ→∞

(
d2Ψn

dξ2
− ξ2Ψn

)
= 0

Ψn(ξ →∞) ∝ ξp exp(−ξ2/2)

• This suggests that we try the following form for the wave functions

Ψn(ξ) = NnHn(ξ) exp(−ξ2/2)

0 =
d2Hn

dξ2
− 2ξ

dHn

dξ
+ (λn − 1)Hn

• The function Hn(ξ) is a polynomial. The full solution is

En = (n +
1
2
)~ω

Hn(ξ) = exp(ξ2/2)[ξ − d
dξ

]n exp(−ξ2/2)

• We can now turn to the step operator method of Dirac. We begin by defin-
ing three new operators in terms of which we can we write Hamiltonian
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operator:

â =
√

mω

2~
x̂ + i

√
1

2m~ω
p̂

â† =
√

mω

2~
x̂− i

√
1

2m~ω
p̂

N̂ = â†â

Ĥ =
p̂2

2m
+

1
2
mω2x̂2

= ~ω(N̂ +
1
2
)

• The proof that we can rewrite the Hamiltonian in this form proceeds as
follows

N̂ = â†â

=

(√
mω

2~
x̂− i

√
1

2m~ω
p̂

)(√
mω

2~
x̂ + i

√
1

2m~ω
p̂

)

=
mω

2~
x̂2 +

1
2m~ω

p̂2 +
i

2~
[x̂, p̂]

=
1
~ω

Ĥ − 1
2

• We are now in a position to go through a series of steps to find the eigen-
states of the harmonic oscillator using these operators.

1. The eigenstates of N̂ are also eigenstates of the Hamiltonian.

N̂ |n〉 = n|n〉
Ĥ|n〉 = (n +

1
2
)|n〉

2. Note that the number operator N̂ is hermitian: N̂† = (â†â)† = â†(â†)† =
â†â = N̂ .

3. The eigenvalues of the number operator are non-negative: n = 〈n|N̂ |n〉 =
〈n|â†â|n〉 = 〈Φ|Φ〉 ≥ 0, where |Φ〉 = â|n〉.

4. The operators â and â†do not commute:

[â, â†] = [
√

mω

2~
x̂ + i

√
1

2m~ω
p̂,

√
mω

2~
x̂− i

√
1

2m~ω
p̂]

=
[x̂, p̂]
i~

= 1

5. These operators do not commute with the number operator either:

[N̂ , â] = â†ââ− ââ†â
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= (ââ† − 1− ââ†)â
= −â

[N̂ , â†] = â†ââ† − â†â†â

= â†(1 + â†â† − â†â†)
= â†

6. We can use our operators to generate new eigenstates of the number oper-
ator: N̂ â|n〉 = â(N̂ − 1)|n〉 = (n− 1)â|n〉. Therefore if |n〉 is an eigenstate
of the number operator with eigenvalue n, then â|n〉 is also an eigenstate
of the number operator but with the new eigenvalue n−1. By considering
normalisation we obtain the following:

â|n〉 = α|n− 1〉
〈n− 1|n− 1〉 = 〈n|n〉 = 1

α2 = 〈n|â†â|n〉
= 〈n|N̂ |n〉
= n

â|n〉 =
√

n|n− 1〉

7. Thus if n is an eigenvalue of N̂ then so is n − 1, and therefore so are
n−2, n−3, . . .. But we have the condition n ≥ 0. Therefore the eigenvalues
must be integers so that this sequence terminates: â|0〉 = 0.

8. We are also able to generate eigenstates using the conjugate operator:
N̂ â†|n〉 = â†(N̂ + 1)|n〉 = (n + 1)â†|n〉. Thus if n is an eigenvalue of N̂ ,
so is n + 1. Thus the eigenvalues of the number operator are elements of
the set of non-negative integers. Once again by considering normalisation
we obtain

â†|n〉 = α|n + 1〉
〈n + 1|n + 1〉 = 〈n|n〉 = 1

α2 = 〈n|ââ†|n〉
= 〈n|1 + N̂ |n〉
= n + 1

â†|n〉 =
√

n + 1|n + 1〉

9. Thus if we know |0〉 then we can generate all other eigenstates

|1〉 = â†|0〉

|2〉 =

√
1
2
â†|1〉 =

√
1
2
(â†)2|0〉

|n〉 =

√
1
n!

(â†)n|0〉

10. We have thus found all the eigenvalues of the Hamiltonian (En = (n +
1
2 )~ω), and know how to generate all the eigenvectors once we have at



1.15. STEP-OPERATOR APPROACH TO HARMONIC OSCILLATOR 31

least one of them. What we now need is a procedure to generate one
eigenvector. We do this as follows:

â|0〉 = 0(√
mω

2~
x + i

√
1

2m~ω

(
−i~

∂

∂x

))
Ψ0(x) = 0

∂Ψ0

∂x
= −mωx

~
Ψ0

Ψ0(x) = A exp(−mωx2

2~
)

∫
Ψ∗0Ψ0 dx = 1

⇒ A =
(mω

π~

) 1
4
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Chapter 2

Angular Momentum [8]

2.1 A Refresher on Commutation Relations
1. The classical expression for orbital angular momentum is ~L = ~r × ~p. In

quantum mechanics it is defined by

L̂ =




x̂
ŷ
ẑ


×




p̂x

p̂y

p̂z







Lx

L̂y

L̂z


 =




ŷp̂z − ẑp̂y

ẑp̂x − x̂p̂z

x̂p̂y − ŷp̂x




2. We have the commutation relations for position and momentum:

[x̂, p̂x] = [ŷ, p̂y] = [ẑ, p̂z] = i~
[x̂, p̂y] = [x̂, p̂z] = [ŷ, p̂x] = [ŷ, p̂z] = [ẑ, p̂x] = [ẑ, p̂y] = 0

3. The angular momentum operator is hermitian:

L̂†x = (ŷp̂z − ẑp̂y)†

= (ŷp̂z)† − (ẑp̂y)†

= p̂†z ŷ
† − p̂†y ẑ†

= p̂z ŷ − p̂y ẑ

= ŷp̂z − ẑp̂y

= L̂x etc.

4. The commutators between angular momentum and position are

[L̂x, x̂] = [ŷp̂z − ẑp̂y, x̂] = 0

[L̂x, ŷ] = [ŷp̂z − ẑp̂y, ŷ] = −ẑ[p̂y, ŷ] = i~ẑ
[L̂x, ẑ] = [ŷp̂z − ẑp̂y, ẑ] = ŷ[p̂z, ẑ] = −i~ŷ
[L̂y, x̂] = −i~ẑ

33
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[L̂y, ŷ] = 0

[L̂y, ẑ] = i~x̂
[L̂z, x̂] = i~ŷ
[L̂z, ŷ] = −i~x̂
[L̂z, ẑ] = 0

• This can be written compactly as [~n · L̂, r̂] = i~r̂× ~n were ~n is a unit
vector, and r̂ is the position operator.

5. The commutators between angular momentum and momentum operators
are:

[L̂x, p̂x] = [ŷp̂z − ẑp̂y, p̂x] = 0

[L̂x, p̂y] = [ŷp̂z − ẑp̂y, p̂y] = p̂z[ŷ, p̂y] = i~p̂z etc.

• This can be written compactly as [~n · L̂, p̂] = i~p̂× ~n

6. The commutators between angular momentum operators are:

[L̂x, L̂x] = 0
[L̂x, L̂y] = [ŷp̂z − ẑp̂y, ẑp̂x − x̂p̂z] = i~L̂z etc.

• This can be written compactly as L̂× L̂ = i~L̂.

7. The commutators between the squares of the angular momentum opera-
tors and the angular momentum operators is given by the following:

[L̂2
x, L̂x] = 0

[L̂2
y, L̂x] = −i~(L̂zL̂y + L̂yL̂z)

[L̂2
z, L̂x] = i~(L̂zL̂y + L̂yL̂z)

⇒ [L̂2, L̂x] = [L̂2
x + L̂2

y + L̂2
z, L̂x] = 0

• More generally we have [L̂2, L̂] = 0.

2.2 Eigenvalues and Eigenfunctions of Orbital An-
gular Momentum Operators

1. Consider [L̂2, L̂z] = 0. This implies that the eigenstates of L̂z are also
eigenstates of L̂2. Let us define one of these eigenstates by |Λλ〉 where
L̂2|Λλ〉 = Λ|Λλ〉 and L̂z|Λλ〉 = λ|Λλ〉.

2. We now show that the eigenvalues Λ are not negative.

〈Λλ|L̂2|Λλ〉 =
∑

i

〈Λλ|L̂†i L̂i|Λλ〉 = Λ

L̂i|Λλ〉 = |Λλi〉
⇒ Λ =

∑

i

〈Λλi|Λλi〉 ≥ 0



2.2. EIGENVALUES AND EIGENFUNCTIONS OF ORBITAL ANGULARMOMENTUMOPERATORS35

• In the light of this, we shall write Λ = ~2l(l + 1), λ = ~m, and the
eigenstates as |lm〉.

3. Note that [L̂x, L̂z] 6= 0 and [L̂y, L̂z] 6= 0. Therefore the eigenstates of L̂x

and L̂y are not |lm〉 . However these operators commute with L̂2. These
apparently contradictory statements can be satisfied if the eigenstates of
these operators are linear combinations of |lm〉, where all eigenstates in
the sum have the same value of l.

4. We shall now write the operators and eigenfunctions for orbital angular
momentum in terms of specific coordinates. This will allow us to produce
functions that we can visualise. It is conventional to use spherical coor-
dinates, and this is what we shall use here. The formulae that connect
rectangular coordinates to spherical coordinates are the following




x
y
z


 =




r sin θ cos φ
r sin θ sin φ

r cos θ







∂
∂x
∂
∂y
∂
∂z


 =




∂r
∂x

∂θ
∂x

∂φ
∂x

∂r
∂y

∂θ
∂y

∂φ
∂y

∂r
∂z

∂θ
∂z

∂φ
∂z







∂
∂r
∂
∂θ
∂

∂φ







∂r
∂x

∂θ
∂x

∂φ
∂x

∂r
∂y

∂θ
∂y

∂φ
∂y

∂r
∂z

∂θ
∂z

∂φ
∂z


 =




sin θ cos φ cos θ cos φ
r

− sin φ
r sin θ

sin θ sin φ cos θ sin φ
r

cos φ
r sin θ

cos θ − sin θ
r 0




L̂ =




L̂x

L̂y

L̂z


 =




yp̂z − zp̂y

zp̂x − xp̂z

xp̂y − yp̂x




= −i~




y ∂
∂z − z ∂

∂y

z ∂
∂x − x ∂

∂z

x ∂
∂y − y ∂

∂x




= −i~



− sin φ ∂

∂θ − cot θ cosφ ∂
∂φ

cosφ ∂
∂θ − cot θ sin φ ∂

∂φ
∂

∂φ




5. We get immediately

L̂2 = −~2

[
cot θ

∂

∂θ
+

∂2

∂θ2
+

1
sin2 θ

∂2

∂φ2

]

6. We want states that are simultaneous eigenstates of L̂z and L̂2. We give
the symbol Ylm(θ, φ) to the eigenstates. Thus we have:

L̂zYlm(θ, φ) = ~mYlm(θ, φ)

⇒ −i~
∂

∂φ
Ylm(θ, φ) = ~mYlm(θ, φ)

⇒ ∂

∂φ
Ylm(θ, φ) = imYlm(θ, φ)

⇒ Ylm(θ, φ) = eimφflm(θ)



36 CHAPTER 2. ANGULAR MOMENTUM [8]

7. For a single valued wave function we must have Ylm(θ, φ+2π) = Ylm(θ, φ).
Therefore m must be an integer.

8. To determine the function flm(θ) we make use of the fact that our state
is also an eigenstate of L̂2.

L̂2eimφflm(θ) = ~2l(l + 1)eimφflm(θ)

⇒ −~2

[
cot θ

∂

∂θ
+

∂2

∂θ2
+

1
sin2 θ

∂2

∂φ2

]
eimφflm(θ) = ~2l(l + 1)eimφflm(θ)

⇒ −
[
cot θ

∂

∂θ
+

∂2

∂θ2
− m2

sin2 θ

]
flm(θ) = l(l + 1)flm(θ)

9. We can eliminate all the trigonometric functions by making the following
substitution µ = cos θ. If we define Flm(µ) = flm(θ) we get

dflm(θ)
dθ

=
dµ

dθ

dFlm(µ)
dµ

= − sin θ
dFlm(µ)

dµ

⇒ d2flm(θ)
dθ2

=
(
− sin θ

d
dµ

)2

Flm(µ)

=
(
− cos θ

d
dµ

+ sin θ2 d2

dµ2

)
Flm(µ)

⇒ l(l + 1)Flm(µ) =
[
2µ

d
dµ

− (1− µ2)
d2

dµ2
+

m2

1− µ2

]
Flm(µ)

10. The factor of 1/(1 − µ2) makes finding a solution problematic. So we
introduce another substitution to remove it Flm(µ) = [1−µ2]|m|/2Glm(µ).
Hence
dFlm(µ)

dµ
= −|m|µ[1− µ2]|m|/2−1Glm(µ) + [1− µ2]|m|/2 dGlm(µ)

dµ

d2Flm(µ)
dµ2

= [1− µ2]|m|/2

{
− |m|

1− µ2
+

2µ2|m|(|m|/2− 1)
(1− µ2)2

− 2|m|
1− µ2

d
dµ

+
d2

dµ2

}
Glm(µ)

⇒ 0 = [1− µ2]|m|/2

{
l(l + 1)− |m|(|m|+ 1)− 2µ(|m|+ 1)

d
dµ

+ (1− µ2)
d2

dµ2

}
Glm(µ)

11. We now make a polynomial expansion for Glm(µ) =
∑∞

n=0 C
(n)
lm µn. This

gives:

C
(n+2)
lm =

[
n(n− 1) + 2n(|m|+ 1) + |m|(|m|+ 1)− l(l + 1)

(n + 1)(n + 2)

]
C

(n)
lm

12. To obtain a convergent series, there must be an N such that C
(N+2)
lm = 0.

Hence

0 = N(N − 1) + 2N(|m|+ 1) + |m|(|m|+ 1)− l(l + 1)

⇒ N = −(|m|+ 1
2
)± (l +

1
2
)

⇒ N = l − |m| as N ≥ 0
⇒ l = integer
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13. Thus, putting all this together we have

Ylm(θ, φ) = Nlmeimφ(sin θ)|m|
l−|m|∑
n=0

C
(n)
lm (cos θ)n

= (−1)m

√
(2l + 1)(l −m)!

4π(l + m)!
Pm

l (cos θ)eimφ

14. Pm
l (µ) is an associated Legendre polynomial given by Pm

l (µ) = (1 −
µ2)|m|/2 dm

dµm Pl(µ), and Pl(µ) is a Legendre polynomial, where

P0(µ) = 1
P1(µ) = µ

0 = (l + 1)Pl+1(µ)− (2l + 1)µPl(µ) + lPl−1(µ)

15. The eigenstates are orthonormal
∫ 2π

0

dφ

∫ π

0

sin θdθ Y ∗
lm(θ, φ)Yl′m′(θ, φ) = δll′δmm′

16. Some of the functions are

Table 2.1: Spherical harmonics

Y00(θ, φ) = 1√
4π

Y10(θ, φ) =
√

3
4π cos θ Y1±1(θ, φ) = ∓

√
3
8π sin θe±iφ

2.3 Generalized Angular Momentum and Step Op-
erator Techniques in Angular Momentum The-
ory

• We now write down formal expressions for angular momenta that apply
to orbital angular momentum, but also more generally to things like spin.

• Generalised angular momenta are defined by the commutation relations
between the operators.

1. We define the raising and lowering operators L̂± = L̂x ± iL̂y. Note that
L̂†− = L̂+.

2. We now consider the commutation relations for the raising and lowering
operators

L̂+L̂− = (L̂x + iL̂y)(L̂x − iL̂y)

= L̂2
x + L̂2

y + i(L̂yL̂x − L̂xL̂y)

= L̂2 − L̂2
z + ~L̂z
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L̂−L̂+ = L̂2 − L̂2
z − ~L̂z

[L̂+, L̂−] = 2~L̂z

[L̂z, L̂±] = ±~L̂±

3. Equipped with these commutation relations we are now in a position to
determine the eigenvalues and eigenvectors of the angular momenta oper-
ators. First we determine the range for the magnetic quantum number.
If we define L̂−|lm〉 = |χ〉, then we have 〈lm|L̂+L̂−|lm〉 = 〈χ|χ〉 ≥ 0.
Similarly we have 〈lm|L̂−L̂+|lm〉 ≥ 0. Therefore we can write

〈lm|L̂−L̂+|lm〉 = 〈lm|L̂2 − L̂2
z + ~L̂z|lm〉

= ~2[l(l + 1)−m2 + m]
≥ 0

⇒ (l +
1
2
)2 ≥ (m− 1

2
)2

⇒ l ≥ −m

〈lm|L̂+L̂−|lm〉 = 〈lm|L̂2 − L̂2
z − ~L̂z|lm〉

= ~2[l(l + 1)−m2 −m]
≥ 0

⇒ (l +
1
2
)2 ≥ (m +

1
2
)2

⇒ l ≥ m

⇒ −l ≤ m ≤ l

4. Now we build the eigenstates using the step operators

L̂zL̂−|lm〉 = L̂−(L̂z − ~)|lm〉
= L̂−(m~− ~)|lm〉
= ~(m− 1)L̂−|lm〉

⇒ L̂−|lm〉 = α|lm− 1〉
⇒ 〈lm|L̂+L̂−|lm〉 = α2〈lm− 1|lm− 1〉

But〈lm|L̂+L̂−|lm〉 = ~2[l(l + 1)−m2 −m]
⇒ α2 = ~2[l(l + 1)−m2 −m]

⇒ L̂−|lm〉 = ~
√

[l(l + 1)−m(m− 1)]|lm− 1〉

5. By a similar argument we can show that

L̂+|lm〉 = ~
√

[l(l + 1)−m(m + 1)]|lm + 1〉

6. From the above we see that if ~m is an eigenstate of L̂z, then so are
~(m + 1), ~(m + 2), etc. But we have the condition that m ≤ l, therefore
for some m ≤ l the coefficient

√
[l(l + 1)−m(m + 1)] must vanish in order

for the series of eigenstates to terminate. Clearly this occurs for m = l.
Thus m ∈ {l, l − 1, l − 2 . . .}.
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7. We also have m ≥ −l. The smallest value of m satisfies
√

[l(l + 1)−m(m− 1)] =
0. This occurs for m = −l. Thus m ∈ {l, l−1, l−2 . . . ,−l+1,−l}. There-
fore l = −l + N where N is a non-negative integer. Thus

l =
N

2
=

{
integer Neven

integer + 1
2 Nodd

2.4 Spin-1/2 Angular Momentum and Pauli Ma-
trices

• Electrons have an internal degree of freedom (spin), as seen in the Stern-
Gerlach experiment.

• It is a form of angular momentum with magnitude 1
2~.

• The operator for spin is ŝ. It obeys the rules of angular momentum oper-
ators:

ŝ× ŝ = i~ŝ
[ŝ2, ŝ] = 0

ŝ2|1
2
ms〉 =

1
2
(
1
2

+ 1)~2|1
2
ms〉

=
3
4
~2|1

2
ms〉

ŝz|12ms〉 = ms~|12ms〉

ms ∈ {1
2
,−1

2
}

• The convention for the state vectors (Dirac notation) is

Table 2.2: Spin states

|α〉 = | 12 1
2 〉 |β〉 = | 12 − 1

2 〉
ŝ2|α〉 = 3

4~
2|α〉 ŝ2|β〉 = 3

4~
2|β〉

ŝz|α〉 = 1
2~|α〉 ŝz|β〉 = − 1

2~|β〉
〈α|α〉 = 〈β|β〉 = 1 〈α|β〉 = 〈β|α〉 = 0

• Now consider ŝx and ŝy:
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Table 2.3: ŝx and ŝy

ŝ+ = ŝx + iŝy ŝ− = ŝx − iŝy

ŝ+|α〉 = 0 ŝ−|α〉 = ~|β〉
ŝ+|β〉 = ~|α〉 ŝ−|β〉 = 0
ŝx = 1

2 (ŝ+ + ŝ−) ŝy = 1
2i (ŝ+ − ŝ−)

ŝx|α〉 = 1
2~|β〉 ŝx|β〉 = 1

2~|α〉
ŝy|α〉 = i 12~|β〉 ŝy|β〉 = −i 12~|α〉
ŝz|α〉 = 1

2~|α〉 ŝz|β〉 = − 1
2~|β〉

• We now derive the Pauli spin matrices. A general spin state can be written
as |χ〉 = a|α〉 + b|β〉. A general spin operator ô acting on |χ〉 produces
a new vector |Φ〉 = ô|χ〉. But we can expand this state vector in our
original basis set: |Φ〉 = c|α〉+d|β〉. Combining these equations we obtain
(c|α〉+ d|β〉) = ô(a|α〉+ b|β〉). Evaluating overlap integrals gives us

c = 〈α|ô|α〉a + 〈α|ô|β〉b
d = 〈β|ô|α〉a + 〈β|ô|β〉b

• In matrix notation we can write this as
(

c
d

)
=

( 〈α|ô|α〉 〈α|ô|β〉
〈β|ô|α〉 〈β|ô|β〉

)(
a
b

)

• Therefore we can represent the operator ô by the matrix

o =
( 〈α|ô|α〉 〈α|ô|β〉
〈β|ô|α〉 〈β|ô|β〉

)

• The spin matrices are thus given by

Table 2.4: Spin matrices

s2 =
(

3
4~

2 0
0 3

4~
2

)
sx =

(
0 1

2~
1
2~ 0

)

sy =
(

0 −i 12~
i 12~ 0

)
sz =

(
1
2~ 0
0 − 1

2~

)

• Pauli introduced the matrices σi = 2
~si

Table 2.5: Pauli spin matrices

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
I =

(
1 0
0 1

)
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• The Pauli spin matrices obey the following relations

[σx, σy] = 2iσz

[σy, σz] = 2iσx

[σz, σx] = 2iσy

σ2
x = σ2

y = σ2
z = 1

Trσx = Trσy = Trσz = 0
detσx = detσy = detσz = −1

[σi, σj ]+ = 2Iδij

where [A, B]+ = AB + BA

σzα = α

σzβ = −β

σ2α = 3α

σ2β = 3β

Example - spin about an arbitrary axis
• Consider the operator for a spin aligned along an arbitrary direction n̂

(ŝ · n̂) where

n̂ =




sin θ cos φ
sin θ sin φ

cos θ




Figure 2.1: Axes
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• The matrix representing the operator equals

sn = s · n̂ =
~
2
σ · n̂

=
~
2




σx

σy

σz


 ·




sin θ cos φ
sin θ sin φ

cos θ




=
~
2

(
cos θ sin θ e−iφ

sin θ eiφ − cos θ

)

• The eigenvalues of this operator are found from

det |sn − λI| = 0

⇒ ~
2

(
cos θ − 2λ

~ sin θ e−iφ

sin θ eiφ − cos θ − 2λ
~

)
= 0

⇒ λ2 =
~2

4

⇒ λ = ±~
2

• The eigenvalues are independent of direction. The eigenvectors (Xλ(n̂))
satisfy

snXλ(n̂) = λXλ(n̂)
~
2

(
cos θ sin θ e−iφ

sin θ eiφ − cos θ

) (
x1

x2

)
= λ

(
x1

x2

)

⇒ X+(n̂) =
(

cos(θ/2)
sin(θ/2) eiφ

)

X−(n̂) =
( − sin(θ/2)

cos(θ/2) eiφ

)

• We have normalised the vectors to 1. In Dirac notation

|X+(n̂)〉 = cos(θ/2)|α〉+ sin(θ/2) eiφ|β〉
|X−(n̂)〉 = − sin(θ/2)|α〉+ cos(θ/2) eiφ|β〉

• Consider the special cases of the axes

|X+(x̂)〉 =
1√
2
[|α〉+ |β〉]

|X−(x̂)〉 =
1√
2
[−|α〉+ |β〉]

|X+(ŷ)〉 =
1√
2
[|α〉+ i|β〉]

|X−(ŷ)〉 =
1√
2
[−|α〉+ i|β〉]

|X+(ẑ)〉 = |α〉
|X−(ẑ)〉 = |β〉
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• If the system starts in the up eigenstate of ŝ · n̂, then the probability of a
measurement of ŝz giving up or down are cos2(θ/2) and sin2(θ/2) respec-
tively. If the system started in the down eigenstate they are sin2(θ/2) and
cos2(θ/2) respectively.

2.5 Magnetic Moments
• The electron has an intrinsic magnetic moment associated with its spin

~ms = −gsµB~s/~ = −gsµB~σ/2, where gs is the gyromagnetic ratio. gs ≈ 2.
µB Is the Bohr magneton.

• Protons also have a spin of 1
2~, and a magnetic moment. However the

constants differ from those for the electron: ~ms = +gP µN~σ/2, µN =
e~/2MP and gP ≈ 5.5883.

• The magnetic moment couples to a magnetic field. The contribution to
the Hamiltonian from this coupling is ∆Ĥ = −m̂s · ~B

2.6 Combination of Angular Momenta
• We will deal with this as an abstract problem first of all, and then apply

it to specific cases.

• Consider the two general angular momenta which belong to two indepen-
dent subsystems Ĵ1 and Ĵ2. For example they might be orbital angular
momentum and spin. Because they belong to independent subsystems
they must commute [Ĵ1, Ĵ2] = 0.

• These operators obey the usual angular momentum eigenequations

Ĵ2
1 |j1m1〉 = j1(j1 + 1)~2|j1m1〉

Ĵ2
2 |j2m2〉 = j2(j2 + 1)~2|j2m21〉

Ĵ1,z|j1m1〉 = m1~|j1m1〉
Ĵ2,z|j2m2〉 = m2~|j2m2〉

• If we work with wave functions, then the combined wave function for two
angular momenta is just the product of the individual wave functions:
Ψ(j1m1j2m2) = Ψ1(j1m1)Ψ2(j2m2). We represent this by the following
state vector |j1j2m1m2〉.

• This joined vector satisfies the following relations

Ĵ2
1 |j1j2m1m2〉 = j1(j1 + 1)~2|j1j2m1m2〉

Ĵ2
2 |j1j2m1m2〉 = j2(j2 + 1)~2|j1j2m1m2〉

Ĵ1,z|j1j2m1m2〉 = m1~|j1j2m1m2〉
Ĵ2,z|j1j2m1m2〉 = m2~|j1j2m1m2〉

Ĵz = Ĵ1,z + Ĵ2,z

Ĵz|j1j2m1m2〉 = (m1 + m2)~|j1j2m1m2〉
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• We also have the following commutation relations

Ĵ2 = (Ĵ1 + Ĵ2)2 = Ĵ2
1 + Ĵ2

2 + 2Ĵ1 · Ĵ2

[Ĵ2, Ĵ2
1 ] = [Ĵ2, Ĵ2

2 ] = 0
[Ĵ2, Ĵ1,z] 6= 0

[Ĵ2, Ĵ2,z] 6= 0

• Therefore the eigenfunctions of Ĵ2 and Ĵz are also eigenfunctions of Ĵ2
1

and Ĵ2
2 , but not of Ĵ1,z and Ĵ2,z.

• We therefore have two complete, but distinct, descriptions of our system:

1. Eigenfunctions of Ĵ2
1 , Ĵ2

2 , Ĵ1,z and Ĵ2,z (|j1j2m1m2〉).
2. Eigenfunctions of Ĵ2

1 , Ĵ2
2 , Ĵ2 and Ĵz (|j1j2jm〉).

• The two sets of eigenstates are related by |j1j2jm〉 =
∑

m1m2
|j1j2m1m2〉〈j1j2m1m2|j1j2jm〉.

• 〈j1j2m1m2|j1j2jm〉 is a Clebsch-Gordan coefficient.

• We can immediately define one condition for the Clebsch-Gordan coeffi-
cients

Ĵz|j1j2jm〉 = m~|j1j2jm〉
=

∑
m1m2

(m1 + m2)~|j1j2m1m2〉〈j1j2m1m2|j1j2jm〉

⇒ 〈j1j2m1m2|j1j2jm〉 = 0 if m1 + m2 6= m

• We can impose upper limits on the values of the eigenvalues of the total
angular momentum operators as follows

max m1 = j1

max m2 = j2

⇒ max m = j1 + j2

m ∈ {−j,−j + 1, . . . , j − 1, j}
⇒ max j = j1 + j2

• We can impose a lower bound on the eigenvalues of the total angular
momentum as follows

– There are (2j1 + 1)(2j2 + 1) possible states which we break up into
multiplets corresponding to different values of the total angular mo-
mentum.

– For j = j1 + j2, we have a multiplet of 2(j1 + j2) + 1 states.

– For j = j1 + j2 − 1, we have a multiplet of 2(j1 + j2 − 1) + 1 states.

– We run out of states when j = |j1 − j2|. Therefore |j1 − j2| ≤ j ≤
j1 + j2. This is the relation obeyed by the third side of a triangle
given the first two.
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• We now begin the process of building the set of Clebsch-Gordan coeffi-
cients.

– For m = j = j1 + j2 there is only one term in the expansion |j1j2j1 +
j2j1 + j2〉 = |j1j2j1j2〉〈j1j2j1j2|j1j2j1 + j2j1 + j2〉. Normalisation
then gives |〈j1j2j1j2|j1j2j1 + j2j1 + j2〉| = 1.

– We now introduce the raising and lowering operators Ĵ± = Ĵ1±+Ĵ2±.
Matrix elements of these operators give

〈j1j2m1m2|Ĵ±|j1j2jm〉 =
√

j(j + 1)−m(m± 1)~〈j1j2m1m2|j1j2jm± 1〉
= 〈j1j2m1m2|Ĵ1± + Ĵ2±|j1j2jm〉
=

√
j1(j1 + 1)−m1(m1 ∓ 1)〈j1j2m1 ∓ 1m2|j1j2jm〉+√
j2(j2 + 1)−m2(m2 ∓ 1)〈j1j2m1m2 ∓ 1|j1j2jm〉

– These expressions allow us to build all the Clebsch-Gordan coeffi-
cients for a given multiplet starting from the one at the extreme
value of the total angular momentum.

– To fix the absolute values of the Clebsch-Gordan coefficients within
a given multiplet we need the following normalisation condition

1 = 〈j1j2jm|j1j2jm〉
=

∑
m1m2

〈j1j2jm|j1j2m1m2〉〈j1j2m1m2|j1j2jm〉

=
∑

m1m2

|〈j1j2jm|j1j2m1m2〉|2

Example - the addition of two spins

• The total spin operator is given by ŝ = ŝ1 + ŝ2. The maximum and
minimum values of the total spin eigenvalues are 1 and 0 respectively.
For the multiplet of maximum total spin (the triplet state) the largest
magnetic quantum number that can be obtained is also 1. The state is
given by |sm〉 = |11〉 = |αα〉.

• If we apply the lowering operator to the state we obtain the following

ŝ−|11〉 = ~
√

2|10〉
= (ŝ1− + ŝ2−)|αα〉
= ~(|βα〉+ |αβ〉)

⇒ |10〉 =
1√
2
(|βα〉+ |αβ〉)

ŝ−|10〉 = ~
√

2|1− 1〉
= (ŝ1− + ŝ2−)

1√
2
(|βα〉+ |αβ〉)

= ~
√

2|ββ〉
⇒ |1− 1〉 = |ββ〉
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• The other multiplet with s = 0 contains only one state (the singlet state).
This must be normalised to 1 and be orthogonal to all the states in
the above multiplet. Since its magnetic quantum number is 0 it must
be formed from a linear combination of |βα〉 and |αβ〉. If we solve the
two equations 〈00|00〉 = 1 and 〈00|10〉 = 0 we obtain the result |00〉 =
1√
2
(|βα〉 − |αβ〉).



Chapter 3

Approximate Methods [6]

3.1 Time-Independent Perturbation Theory

• Suppose we have solved the time independent Schroedinger equation for
some problem (for example the particle in a box). Now we want the
solution for a problem in which a very small additional potential is applied
to our original system.

• We wish to do this in a way that allows us to use all the work we have
already done for the original problem.

• For the original problem we might have Ĥ|Φn〉 = εn|Φn〉. For our new
problem we would have (Ĥ+λV̂ )|Ψn〉 = En|Ψn〉, where V̂ is the additional
potential, and λ is a scalar that we associate with the perturbing potential
which allows us to perform systematic expansions as we shall now see.

• We make the following expansions in the parameter λ

En(λ) =
∞∑

r=0

En,rλ
r

|Ψn(λ)〉 =
∞∑

r=0

|Ψn,r〉λr

• If we substitute our expansions into the original eigenequation we obtain
the following (Ĥ + λV̂ )

∑∞
r=0 |Ψn,r〉λr =

∑∞
s=0 En,sλ

s
∑∞

r=0 |Ψn,r〉λr.

• Since our parameter can have any value, for the above equation to always
be true the coefficients preceding each power of the parameter must be
the same on the left and on the right of the equation.

λ0 : Ĥ|Ψn,0〉 = En,0|Ψn,0〉
λ1 : Ĥ|Ψn,1〉+ V̂ |Ψn,0〉 = En,0|Ψn,1〉+ En,1|Ψn,0〉
λ2 : Ĥ|Ψn,2〉+ V̂ |Ψn,1〉 = En,0|Ψn,2〉+ En,1|Ψn,1〉+ En,2|Ψn,0〉

47
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• From these equations we can obtain the following results. From the 0th
power of the parameter (λ0) we just obtain the eigenequation for the
unperturbed system. Therefore we can write

|Ψn,0〉 = |Φn〉
En,0 = εn

• From the first power of the parameter (λ1)

(Ĥ − εn)|Ψn,1〉 = (En,1 − V̂ )|Φn〉
|Ψn,1〉 =

∑
p

C(n,1)
p |Φp〉

⇒ (Ĥ − εn)
∑

p

C(n,1)
p |Φp〉 = (En,1 − V̂ )|Φn〉

⇒
∑

p

C(n,1)
p (εp − εn)|Φp〉 = (En,1 − V̂ )|Φn〉

⇒ C(n,1)
p (εp − εn) = En,1δpn − 〈Φp|V̂ |Φn〉
p = n : En,1 = 〈Φn|V̂ |Φn〉

p 6= n : C(n,1)
p =

〈Φp|V̂ |Φn〉
εn − εp

⇒ |Ψn,1〉 =
∑

p(6=n)

|Φp〉 〈Φp|V̂ |Φn〉
εn − εp

+ C(n,1)
n |Φn〉

C
(n,1)
n is found by normalizing the wavefunction |Ψn〉.

• From the square of the parameter (λ2) we get the following results

En,2|Φn〉 = (Ĥ − εn)|Ψn,2〉+ (V̂ − En,1)|Ψn,1〉
⇒ En,2 = 〈Φn|(Ĥ − εn)|Ψn,2〉+ 〈Φn|(V̂ − En,1)|Ψn,1〉

= 〈Φn|(εn − εn)|Ψn,2〉+ 〈Φn|V̂ |Ψn,1〉 − En,1〈Φn|Ψn,1〉
= 〈Φn|V̂ |Ψn,1〉 − 〈Φn|V̂ |Φn〉〈Φn|Ψn,1〉

=
∑

p( 6=n)

〈Φn|V̂ |Φp〉 〈Φp|V̂ |Φn〉
εn − εp

=
∑

p( 6=n)

|〈Φp|V̂ |Φn〉|2
εn − εp

• Therefore to second order the perturbed energy is

En ≈ εn + 〈Φn|V̂ |Φn〉+
∑

p(6=n)

|〈Φp|V̂ |Φn〉|2
εn − εp

• The above theory breaks down when we have degenerates states (εn−εp =
0). This is because the terms in the perturbation expansion involve ratios
of matrix elements divided by εn − εp. These terms are infinite unless
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the matrix elements are zero. Degenerates states have the property that
any normalised linear combination of them produces another state of the
same energy. Therefore the procedure for handling degenerates states in
perturbation theory is to take linear combinations that produce matrix
elements of the perturbing potential that are zero. That is

|χα〉 =
∑

p∈{degenerate states}
Cα,p|Φp〉

〈χα|V̂ |χβ〉 = 〈χα|V̂ |χα〉δαβ

• The first order term in the perturbation expansion then obeys

C
(α,1)
β (εβ − εα) = Eα,1δαβ − 〈χβ |V̂ |χα〉

⇒ 0 = Eα,1δαβ − 〈χα|V̂ |χα〉δαβ

⇒ Eα,1 = 〈χα|V̂ |χα〉
C(α,1)

p (εp − εα) = Eα,1δαp − 〈Φp|V̂ |χα〉

⇒ C(α,1)
p =

〈Φp|V̂ |χα〉
εα − εp

⇒ |Ψα,1〉 =
∑

p/∈{degenerate states}
|Φp〉 〈Φp|V̂ |χα〉

εα − εp

• We find the orthogonal states by diagonalising the matrix Vpq = 〈Φp|V̂ |Φq〉:∑
q

VpqCα,q = ηαCα,p

⇒
∑
pq

C∗β,pVpqCα,q = ηαδαβ

⇒ 〈χβ |V̂ |χα〉 = ηαδαβ

Example - charged harmonic oscillator
• Consider a charged harmonic oscillator in an electric field. The electric

field results in an additional force on the harmonic oscillator which can be
represented by the additional potential V̂ = QEx̂ where Q is the charge
on the oscillator, E is the strength of the electric field and x̂ is the operator
representing the displacement of the oscillator.

• The eigenstates of the harmonic oscillator are not degenerate in one di-
mension. Therefore we can use ordinary perturbation theory. For this we
need the following matrix elements 〈p|V̂ |n〉 = QE〈p|x̂|n〉, where |p〉 is an
eigenstate of the unperturbed harmonic oscillator.

• We can use the Dirac raising and lowering operators to represent the
displacement since x̂ =

√
~

2Mω (â + â†). The matrix elements are thus

〈p|V̂ |n〉 = QE

√
~

2Mω
〈p|(â + â†)|n〉

= QE

√
~

2Mω

(√
nδp,n−1 +

√
n + 1δp,n+1

)
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• The perturbed energy to second order is thus

En = εn + 〈Φn|V̂ |Φn〉+
∑

p(6=n)

|〈Φp|V̂ |Φn〉|2
εn − εp

= (n +
1
2
)~ω + 0 +

Q2E2~
2Mω

(
n

~ω
− n + 1

~ω

)

= (n +
1
2
)~ω − Q2E2

2Mω2

• Thus each level receives the same constant shift downwards.

Example - Stark effect
• The Stark effect in atomic spectra is observed when an electric field is

applied to an atom. It can be understood from perturbation theory in
which the perturbing potential is once again an electric field interacting
with a charged particle (this time an electron).

• We will study this effect using the n = 2 levels of the hydrogen atom in a
uniform electric field pointing in the z direction.

• There are four degenerate states in the n = 2 shell of hydrogen, namely
|S0〉, |P−1〉, |P0〉 and |P1〉. The states are labelled by the orbital angular
momentum. They satisfy the following equations

L̂z|S0〉 = 0
L̂z|P−1〉 = −~|P−1〉
L̂z|P0〉 = 0
L̂z|P1〉 = ~|P1〉

• The perturbing potential we can write as V̂ = −eEẑ. Therefore we need
to consider matrix elements of the form −eE〈lm|ẑ|l′m′〉.

• We now recall that [ẑ, L̂z] = 0. If we take matrix elements of this expres-
sion we obtain

0 = 〈lm|[ẑ, L̂z]|l′m′〉
= 〈lm|ẑL̂z − L̂z ẑ|l′m′〉
= ~(m′ −m)〈lm|ẑ|l′m′〉

⇒ if m′ 6= m then 0 = 〈lm|ẑ|l′m′〉

• Now consider 〈lm|ẑ|lm〉. These are all zero because the hydrogen wave
functions have the following property |〈~r|nlm〉|2 = |〈−~r|nlm〉|2 (they are
in variant under the parity operation).

• The full matrix of matrix elements of the perturbation potential is there-
fore

V =




0 v 0 0
v∗ 0 0 0
0 0 0 0
0 0 0 0



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• Where v = 〈S0| − eEẑ|P0〉 = 3eEa0. Thus the electric field only causes
two of the states to mix, namely |S0〉 and |P0〉. Therefore we only need to
diagonalize a 2× 2 matrix.

(
0 v
v 0

) (
Cs

Cp

)
= η

(
Cs

Cp

)

⇒ vCp = ηCs

vCs = ηCp

⇒ v2CsCp = η2CsCp

⇒ η = ±3eEa0

⇒
(

Cs

Cp

)
=

1√
2

(
1
±1

)

Example - spin-orbit coupling
• Our next example is the spin-orbit correction in hydrogen. The perturbing

potential has the form

V̂ =
1

2m2c2

Ze2

4πε0

1
r3

L̂ · Ŝ

= ζ(r)L̂ · Ŝ

• As previously we will try to make use of as much symmetry as possible.
We note the following commutation relation [L̂2, L̂ · Ŝ] = [L̂2, L̂] · Ŝ = 0.
Therefore [L̂2, V̂ ] = 0, and so the total angular momentum remains a good
quantum number, and the perturbation can only mix states which have
the same value of l.

• For a given principal quantum number all the states are degenerate. There-
fore we must use degenerate perturbation theory. The basis states for hy-
drogen we can represent by |nlmms〉, where ms is the magnetic quantum
number associated with spin.

• If we define Ĵ = L̂ + Ŝ, then we can obtain the following

Ĵ2 = L̂2 + Ŝ2 + 2L̂ · Ŝ
V̂ = ζ(r)

1
2
(Ĵ2 − L̂2 − Ŝ2)

⇒ 0 = [L̂2, V̂ ]
= [S2, V̂ ]
= [Ĵ2, V̂ ]
= [ĴZ , V̂ ]

• Thus the eigenstates of the perturbing Hamiltonian will also be eigen-
states of the total angular momentum, the spin, and the orbital angular
momentum. To obtain eigenstates of the total angular momentum start-
ing from our basis states we need to use the normal rules for coupling
angular momentum. That is |nljmj〉 =

∑
mms

|nlmms〉〈l 1
2mms|l 1

2jmj〉,
where 〈l 1

2mms|l 1
2jmj〉 is a Clebsch-Gordan coefficient.
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• Using these new basis states we obtain the first order energy shifts as

∆Enljmj = 〈nljmj |V̂ |nljmj〉
= 〈nljmj |ζ(r)

1
2
(Ĵ2 − L̂2 − Ŝ2)|nljmj〉

=
~2

2
[j(j + 1)− l(l + 1)− 3

4
]〈nljmj |ζ(r)|nljmj〉

=
~2

2
[j(j + 1)− l(l + 1)− 3

4
]ζnl

ζnl = 〈nljmj |ζ(r)|nljmj〉

=
1

2m2c2

Ze2

4πε0

Z3

a2
0n

3l(l + 1)(l + 1
2 )

• If l = 0 then the energy shift is 0. Otherwise we have j = l ± 1
2 , and the

energy shifts are

∆Enljmj =

{
ζnl

~2
2 l j = l + 1

2

−ζnl
~2
2 (l + 1) j = l − 1

2

Example - positronium
• Positron (positive electron) and electron orbit about each other.

• The energy levels are the same as for hydrogen, except that they are
multiplied by a factor of one half because the reduced mass in positronium
is one half of that for hydrogen.

• The magnetic moments on the electron and positron interact to give a
spin-spin interaction.

Ĥ = Ĥ0 + Aŝe · ŝp

• Both the spin operators commute with the Hamiltonian Ĥ0, thus there
are four degenerate eigenstates corresponding to the four possible spin
states (one singlet state and three triplets states), provided we ignore the
spin-spin interaction.

• The perturbation is already diagonal in the total spin states

〈SMs|ŝe · ŝp|S′M ′
s〉 =

1
2
〈SMs|Ŝ2 − ŝ2

e − ŝ2
p|S′M ′

s〉

=
~2

2
(S(S + 1)− 3

2
)δSS′δMSM ′

S

=

{
− 3~2

4 S = 0
~2
4 S = 1

• Thus the first order degenerate perturbation shift in energy is given by

∆E =

{
− 3~2

4 A S = 0 (singlet)
~2
4 A S = 1 (triplet)
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• Positronium decays when the positron and electron annihilate each other.
To conserve energy, linear momentum, and angular momentum, the singlet
state must decay into two photons, and the triplet state must decay into
three photons. The photon carries a spin angular momentum of one.

3.2 Variational Principle

• Consider a system described by a Hamiltonian Ĥ. Consider also a guess
for the wave function for the system |Ψ〉. We define the energy of the
system by EΨ = 〈Ψ|Ĥ|Ψ〉/〈Ψ|Ψ〉. We now expand this wave function
in terms of the eigenstates of the Hamiltonian |Ψ〉 =

∑
n Cn|Φn〉 where

Ĥ|Φn〉 = En|Φn〉. Therefore we get

EΨ =
∑

nm C∗nCm〈Φn|Ĥ|Φm〉∑
nm C∗nCm〈Φn|Φm〉

=
∑

n |Cn|2En∑
n |Cn|2

=
∑

n |Cn|2(En − E0 + E0)∑
n |Cn|2

= E0 +
∑

n |Cn|2(En − E0)∑
n |Cn|2

≥ E0

• This tells us that for any guess for the wave function, our estimate for
the energy will be no less than the ground state energy. This means that
we can optimise our guess by varying it in such a way as to minimise the
estimated energy EΨ.

• We can extend this idea to excited states as well. Here we consider just
the first excited state. This will be orthogonal to the ground state, so
we need to consider a trial wave function that obeys 〈Φ0|Ψ〉 = 0. We
can always achieve this by writing the trial wave function in the following
way |Ψ〉 = α|Ψ̃〉 + β|Φ0〉. Imposing the orthogonality condition gives
0 = 〈Φ0|Ψ〉 = α〈Φ0|Ψ̃〉 + β. From this we get |Ψ〉 = α(1 − |Φ0〉〈Φ0|)|Ψ̃〉.
If we expand the function |Ψ̃〉 in terms of the eigenstates we have |Ψ̃〉 =∑∞

n=0 Cn|Φn〉, and hence

|Ψ〉 =
∞∑

n=0

αCn(1− |Φ0〉〈Φ0|)|Φn〉

=
∞∑

n=0

αCn(1− |Φ0〉〈Φ0|)|Φn〉

=
∞∑

n=1

αCn|Φn〉

where in the last line we make use of the fact that the term (1−|Φ0〉〈Φ0|)
is 1 unless n = 0, in which case it is 0. This allows us to change the range
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of the sum from 0 →∞ to 1 →∞. If we now use this to evaluate EΨ, we
obtain the result EΨ ≥ E1. Therefore, provided our trial wave function is
orthogonal to the ground state we can use exactly the same procedure for
the first excited state as we use for the ground state.

Example - helium atom
• We now perform a variational calculation for the helium atom. The Hamil-

tonian is given by

Ĥ =
p̂2
1

2m
+

p̂2
2

2m
− Ze2

r1
− Ze2

r2
+

e2

|~r1 − ~r2|

• We now assume that the wave function has the form Ψ(~r1, ~r2) = ψ1s(~r1)ψ1s(~r2),

where ψ1s(~r) = 1√
π

(
Q
a0

)3/2

exp(−Qr/a0). Note that
∫

d~r1d~r2|Ψ(~r1, ~r2)|2 =
1.

• The estimate for the energy is then given by

EΨ =
∫

d~r1d~r2ψ1s(~r1)ψ1s(~r2)
[

p̂2
1

2m
+

p̂2
2

2m
− Ze2

r1
− Ze2

r2
+

e2

|~r1 − ~r2|
]

ψ1s(~r1)ψ1s(~r2)

=
∫

d~r1ψ1s(~r1)
[

p̂2
1

2m
− Ze2

r1

]
ψ1s(~r1) +

∫
d~r2ψ1s(~r2)

[
p̂2
2

2m
− Ze2

r2

]
ψ1s(~r2)

+
∫

d~r1d~r2ψ1s(~r1)ψ1s(~r2)
e2

|~r1 − ~r2|ψ1s(~r1)ψ1s(~r2)

= 2

(
Q2e2

2a0
− ZQe2

a0

)

︸ ︷︷ ︸
Hydrogen− like

+

5Qe2

8a0︸ ︷︷ ︸
e− e

• To optimise our wave function we now minimise the energy with respect
to our parameter Q. This gives

0 =
∂EΨ

∂Q

=
e2

a0

(
5
8

+ 2Q− 2Z

)

⇒ Q = Z − 5
16

• Thus we see that the effective charge appearing in the exponent of the wave
function is reduced relative to the true nuclear charge by the amount 5/16.
This is a result of the repulsion between the electrons which screens the
nucleus. The minimum energy is E = −(Z − 5

16 )2 e2

a0
= 7620 kJ/mol. The

experimental value is 7477 kJ/mol. So we see that our calculated value is
indeed larger than the true value. The error is a result of our very simple
form for the wave function.
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Simple Time-dependent
systems [3]

4.1 Superposition of States of Different Energies
• As we saw earlier the solution of the time-dependent Schroedinger equation

for a system of fixed energy En is Ψn(xt) = eEnt/i~Φn(x).

• A general wave function can be constructed as a linear combination of
these functions Ψ(xt) =

∑
n CneEnt/i~Φn(x), where Cn =

∫
Φ∗n(x)Ψ(x0) dx.

• Consider the expectation value of an operator Ô with respect to this wave
function

〈O〉 = 〈Ψ|Ô|Ψ〉
=

∑
nm

C∗nCme(Em−En)t/i~〈Φn|Ô|Φm〉

• Suppose the operator is the Hamiltonian (Ô = Ĥ). Then we have Ĥ|Φn〉 =
En|Φn〉, and hence

〈H〉 =
∑
nm

C∗nCme(Em−En)t/i~〈Φn|Ĥ|Φm〉

=
∑
nm

C∗nCme(Em−En)t/i~〈Φn|Em|Φm〉

=
∑
nm

|Cn|2En

• This is independent of time. In fact in general it is straightforward to
show that any operator that commutes with the Hamiltonian will have an
expectation value that is independent of time

d〈O〉
dt

=
1
i~
〈Ψ|[Ô, Ĥ]|Ψ〉

= 0 since [Ô, Ĥ] = 0
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• The expectation value of all other operators varies with time. Consider a
wave function that is a linear superposition of just two states:

|Ψ〉 = C1eE1t/i~|Φ1〉+ C2eE2t/i~|Φ2〉
〈O〉 = (C∗1e−E1t/i~〈Φ1|+ C∗2e−E2t/i~〈Φ2|)Ô(C1eE1t/i~|Φ1〉+ C2eE2t/i~|Φ2〉)

= |C1|2O11 + |C2|2O22 + C∗1C2e(E2−E1)t/i~O12 + C∗2C1e(E1−E2)t/i~O21

Onm = 〈Φn|Ô|Φm〉

• If the operator Ô is hermitian then we have O12 = O∗21. In this case we
obtain

〈O〉 = |C1|2O11+|C2|2O22+
[
C∗1C2e(E2−E1)t/i~O12

]
+

[
C∗1C2e(E2−E1)t/i~O12

]∗

• If we define ~ω = E2 − E1, and further we assume that C1, C2 and O12

are all real, then we obtain

〈O〉 = |C1|2O11 + |C2|2O22 + 2C1C2 cos(ωt)O12

= Ō + ∆ cos(ωt)
Ō = |C1|2O11 + |C2|2O22

∆ = 2C1C2O12

• If either C1 or C2 is zero then the expectation value is time independent
because we are now in an eigenstate.

4.2 Electron in Magnetic Field
• We now consider a system that contains one electron. We now place this

system in a magnetic field, and allow the electronic spin to couple to the
magnetic field. We will neglect the interaction between the orbital motion
of the electron and field (which is a much smaller effect). The Hamiltonian
that describes this system is

Ĥ = Ĥ0 − gsµB

~
Ŝ · ~B

• We now assume that the magnetic field points in the z direction and is
everywhere uniform ~B = B~ez. For this case the Hamiltonian simplifies to
Ĥ = Ĥ0 − gsµBB

~ Ŝz = Ĥ0 − ωŜz.

• Provided the unperturbed Hamiltonian does not depend on spin then we
have [Ĥ0, Ĥ] = 0, and thus the eigenstates of the unperturbed Hamiltonian
are also eigenstates of the perturbed Hamiltonian. Let the eigenstates be
represented by |nms〉, where ms is the spin magnetic quantum number.

• The eigenvalues of our Hamiltonian are then

Enms = 〈nms|Ĥ|nms〉
= 〈nms|Ĥ0|nms〉+ 〈nms| − ωŜz|nms〉
= E(0)

n − ~ωms
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• Suppose we can ignore all eigenstates of the unperturbed Hamiltonian
except the ground state. Then the general time-dependent way function
for our system in a magnetic field becomes

|Ψ(t)〉 = C1e(E0+
1
2~ω)t/i~|0− 1

2
〉+ C2e(E0− 1

2~ω)t/i~|01
2
〉

• If the system starts in an eigenstate of the operator Ŝz, then one or other
of the constant coefficients must be 0. Either way the system remains in
that eigenstate for all time.

• Consider the expectation value of the z component of the spin operator

〈Sz〉 = |C1|2(−1
2
~) + |C2|2(1

2
~)

=
1
2
~(|C2|2 − |C1|2)

= constant

• Now considered the expectation value of the x component of the spin
operator

Ŝx =
1
2
(Ŝ+ + Ŝ−)

Ŝ+|12 〉 = 0

Ŝ+| − 1
2
〉 = ~|1

2
〉

Ŝ−|12 〉 = ~| − 1
2
〉

Ŝ−| − 1
2
〉 = 0

〈Sx〉 = 0 + 0 + 2Re
{

C∗1C2e−~ωt/i~〈0− 1
2
|1
2
(Ŝ+ + Ŝ−)|01

2
〉
}

= Re
{
C∗1C2eiωt~

}

• Similarly the expectation value of the y component of the spin operator is

〈Sy〉 = −Im
{
C∗1C2eiωt~

}

• Now consider the special case C1 = C2 = 1√
2

〈Sz〉 = 0

〈Sy〉 = −~
2

sin ωt

〈Sx〉 =
~
2

cos ωt

• For this special case the spin precesses perpendicular to the magnetic field.
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4.3 Time Evolution of Entangled States of Two
Spin-1/2 Particles with Total Spin Zero.

• If two particles are in an entangled state then any measurement made on
one of the particles will influence the state of the other particle. Math-
ematically this means that the wave function for the combined system
cannot be expressed as a single product of the wave functions for the two
individual particles.

• If we have two electrons in a state of zero spin then we know that the wave
function for the spins can be written as |S = 0,ms = 0〉 = 1√

2
(|αβ〉−|βα〉).

This is clearly an entangled state.

• [THIS HAS YET TO BE FINISHED]
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Identical Particles [2]

• If you have many particles, you have a set of operators for each particle
(p̂i, r̂i, Ŝi, L̂i . . .).

• The Hamiltonian for a system of many particles is characterised by the
following equations

Ĥ({p̂i}, {q̂i}) =
∑

i

p̂2
i

2Mi
+ V̂ ({q̂i})

Ĥ({p̂i}, {q̂i})Ψ({qi}, t) = i~
∂

∂t
Ψ({qi}, t)

• Other system wide operators include

L̂ =
∑

i

L̂i

P̂ =
∑

i

P̂i

Ŝ =
∑

i

Ŝi

• All operators for particle i commute with those for particle j: [P̂i, P̂j ] =
[P̂i, r̂j ] = . . . = 0.

• Identical particles cannot be distinguished by any intrinsic property (for
example all electrons are equivalent to one another). Further, they cannot
be distinguished by their trajectories in quantum mechanics. This opens
the way for a new system wide operator which interchanges identical par-
ticles

P̂ijf(q1 . . . qi . . . qj . . . qN ) = f(q1 . . . qj . . . qi . . . qN )

• Clearly P̂ 2
ijf = f . Therefore the eigenvalues of P̂ij must be ±1. If P̂ijf =

+f , then the function f is a symmetric eigenfunction of P̂ij , while if
P̂ijf = −f , then the function f is an anti symmetric eigenfunction.
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• For identical particles P̂ijĤf = ĤP̂ijf for all pairs of particles. Therefore
the eigenfunctions of the Hamiltonian must also be eigenfunctions of all
permutation operators P̂ij .

• However [P̂ij , P̂rs] 6= 0. To accommodate this fact the wave function
must either be completely symmetric under interchange of particles, or
completely anti symmetric. Under this condition we find that P̂ijP̂rsf =
P̂rsP̂ijf .

• Therefore wave functions for identical particles must be fully symmetric
or fully anti symmetric under exchange of particles

– Bosons (particles with integer spin such as photons) have fully sym-
metric wave functions

– Fermions (particles with half integer spin, such as electrons) have
fully anti symmetric wave functions.

5.1 Systems of Two Identical Particles

5.1.1 Two fermions

• We now consider two electrons. The wave function for one electron can
be written as ψnσ = φn(~r)χσ, where φn(~r) is the spatial part of the wave
function and χσ is the spin part.

• If we combine these for two electrons the natural starting point is to form
a product Ψ(1, 2) = ψnσ(1)ψn′σ′(2). But this has the wrong symmetry
properties under exchange of particles 1 and 2. So consider

ΨA(1, 2) =
1√
2
(ψnσ(1)ψn′σ′(2)− ψnσ(2)ψn′σ′(1)) = −ΨA(2, 1)

• This wave function now has the correct symmetry. This is the simplest
case of a Slater determinant.

• Consider the special case n = n′. We can now rewrite the wave function
as

ΨA(1, 2) = φn(1)φn(2)
1√
2
(χσ(1)χσ′(2)− χσ(2)χσ′(1))

• If we now also set σ = σ′ then we find that the wave function vanishes.
Thus we cannot have both electrons in the same single particle state. This
is the Pauli exclusion principle for fermions.

• If we now set χσ = α and χσ = β, then we get

ΨA(1, 2) = φn(1)φn(2)
1√
2
(α(1)β(2)− α(2)β(1))

• But this new spin state is just the S = 0, ms = 0 state.
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• Now consider the alternative case in which n 6= n′. We are able in this
case to obey the Pauli exclusion principle while having σ = σ′. There are
two possible solutions

ΨA(1, 2) =
1√
2
(φn(1)φn′(2)− φn(2)φn′(1))α(1)α(2)

ΨA(1, 2) =
1√
2
(φn(1)φn′(2)− φn(2)φn′(1))β(1)β(2)

• The spin parts of the wave function correspond to the states S = 1,
ms = ±1. This suggests that there should be a third possibility with
S = 1, ms = 0. This wave function would have the form

ΨA(1, 2) =
1√
2
(φn(1)φn′(2)− φn(2)φn′(1))

1√
2
(α(1)β(2) + α(2)β(1))

• This wave function has the necessary property that ΨA(1, 2) = −ΨA(2, 1).
Thus we see that we have two sets of solutions

– The singlet set with symmetric spatial part of the wave function but
anti symmetric spin part (S = 0).

– The triplet set with anti symmetric spatial part of the wave function
but symmetric spin part (S = 1).

• That are also mixed solutions for which n 6= n′ and σ 6= σ′. But these
are not good wave functions because they are not eigenstates of the spin
operator. Provided [Ĥ, Ŝ] = 0, then the eigenstates of the Hamiltonian
should also be eigenstates of the spin operator.

5.1.2 Two bosons

• Consider two photons. We can go through the same procedure as above,
except that now we must produce a symmetric wave function.

ΨS(1, 2) =
1√
2
(ψnσ(1)ψn′σ′(2) + ψnσ(2)ψn′σ′(1)) = ΨS(2, 1)

• We can see the most important difference between bosons and fermions
by considering the special case of n = n′ and σ = σ′. In the case of the
fermions this caused the wave function to vanish. But in this case we get

ΨS(1, 2) = ψnσ(1)ψnσ(2)

• Notice that we have dropped a factor of
√

2 to obtain the correct normal-
isation. From this we see that more than one boson is able to occupy a
particular single particle state. One consequence of this is that you can
have many photons in one place with the same energy and travelling in
the same direction.



62 CHAPTER 5. IDENTICAL PARTICLES [2]

5.2 Independent Particle Model of He Atom

• As we saw earlier when looking at the variational principle, the Hamilto-
nian for the helium atom is

Ĥ =
p̂2
1

2m
+

p̂2
2

2m
− Ze2

r1
− Ze2

r2
+

e2

|~r1 − ~r2|

• Note that [L̂2, Ĥ] = [L̂z, Ĥ] = 0. Therefore the eigenstates of the Hamil-
tonian will also be angular momentum eigenstates.

• If we have normalised wave functions then the energy of the atom is given
by EΨ = 〈Ψ|Ĥ|Ψ〉.

• For the singlet states we have

ES =
∫

d~r1d~r2φ(~r1)φ(~r2)Ĥφ(~r1)φ(~r2)〈s = 0ms = 0|s = 0ms = 0〉

=
∫

d~r1d~r2φ(~r1)φ(~r2)Ĥφ(~r1)φ(~r2)

=
∫

d~r1φ(~r1)
[

p̂2
1

2m
− Ze2

r1

]
φ(~r1)

∫
d~r2|φ(~r2)|2

+
∫

d~r2φ(~r2)
[

p̂2
2

2m
− Ze2

r2

]
φ(~r2)

∫
d~r1|φ(~r1)|2

+
∫

d~r1d~r2
e2|φ(~r1)|2|φ(~r2)|2

|~r1 − ~r2|

= 2
∫

d~rφ(~r)
[

p̂2

2m
− Ze2

r
+

1
2

∫
d~x

e2|φ(~x)|2
|~r − ~x|

]
φ(~r)

• Thus the energy looks like that from two independent electrons each of
which is moving in an effective potential

V (r) = −Ze2

r
+

1
2

∫
d~x

e2|φ(~x)|2
|~r − ~x|

• This potential is that generated by the nucleus plus a term produced by
the average interaction between the electrons which partially screens the
nuclear potential. This result is the single particle picture result.

• To determine the wave function we use the variational principle. We vary
the wave function until we have minimised the energy Es.

• We now consider the triplet state

ET =
1
2

∫
d~r1d~r2(φ1(~r1)φ2(~r2)− φ1(~r2)φ2(~r1))Ĥ(φ1(~r1)φ2(~r2)− φ1(~r2)φ2(~r1))〈1ms|1ms〉

=
1
2

∫
d~r1d~r2(φ1(~r1)φ2(~r2)− φ1(~r2)φ2(~r1))Ĥ(φ1(~r1)φ2(~r2)− φ1(~r2)φ2(~r1))
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• Consider the one body operators. We will use the operator p̂2
1

2m as an
example:
〈

p2
1

2m

〉
=

1
2

∫
d~r1d~r2(φ1(~r1)φ2(~r2)− φ1(~r2)φ2(~r1))

p̂2
1

2m
(φ1(~r1)φ2(~r2)− φ1(~r2)φ2(~r1))

=
1
2

∫
d~r1φ1(~r1)

p̂2
1

2m
φ1(~r1)

∫
d~r2φ2(~r2)φ2(~r2)

+
1
2

∫
d~r1φ2(~r1)

p̂2
1

2m
φ2(~r1)

∫
d~r2φ1(~r2)φ1(~r2)

− 1
2

∫
d~r1φ1(~r1)

p̂2
1

2m
φ2(~r1)

∫
d~r2φ2(~r2)φ1(~r2)

− 1
2

∫
d~r1φ2(~r1)

p̂2
1

2m
φ1(~r1)

∫
d~r2φ1(~r2)φ2(~r2)

=
1
2

∫
d~r1φ1(~r1)

p̂2
1

2m
φ1(~r1) +

1
2

∫
d~r1φ2(~r1)

p̂2
1

2m
φ2(~r1)

• Now consider the two body operator e2

|~r1−~r2|
〈

e2

|~r1 − ~r2|
〉

=
1
2

∫
d~r1d~r2(φ1(~r1)φ2(~r2)− φ1(~r2)φ2(~r1))

e2

|~r1 − ~r2| (φ1(~r1)φ2(~r2)− φ1(~r2)φ2(~r1))

=
1
2

∫
d~r1d~r2

e2|φ1(~r1)|2|φ2(~r2)|2
|~r1 − ~r2|

+
1
2

∫
d~r1d~r2

e2|φ1(~r2)|2|φ2(~r1)|2
|~r1 − ~r2|

−
∫

d~r1d~r2φ1(~r1)φ2(~r2)
e2

|~r1 − ~r2|φ1(~r2)φ2(~r1)

• Combining all the terms we obtain

ET =
∫

d~rφ1(~r)
[

p̂2

2m
− Ze2

r
+

1
2

∫
d~x

e2|φ2(~x)|2
|~r − ~x|

]
φ1(~r)

+
∫

d~rφ2(~r)
[

p̂2

2m
− Ze2

r
+

1
2

∫
d~x

e2|φ1(~x)|2
|~r − ~x|

]
φ2(~r)

−
∫

d~rd~xφ1(~r)φ2(~x)
e2

|~r − ~x|φ1(~x)φ2(~r)

• The first two terms are clearly completely analogous to the single term in
the singlet state.

• However the third term is new. It is called the exchange energy, and is a
direct consequence of the anti symmetric form of the spatial part of the
wave function.

• The exchange energy lowers the energy of states with parallel spins. This is
because the symmetry of the wave function keeps these electrons spatially
separated from each other. That is, it is a result of correlation in the
motion of the electrons.
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Chapter 6

Interpretations of quantum
mechanics [4]

6.1 Wave-Particle Duality and Indeterminacy
We wish to clarify the key concepts of quantum mechanics, which involves some
strange concepts. We will illustrate these concepts by reference to experiments.
The concepts are

• Waveparticle duality : consider one component of the material world (for
example, electrons). Some experiments are best understood by thinking
of it as a wave (for example, diffraction effects), while others are best un-
derstood by thinking of it as a particle (for example, momentum transfer).

• Indeterminacy : a wave function does not tell you what you will mea-
sure. Instead it gives you probabilities. But you in fact measure definite
values. Heisenberg’s uncertainty principle quantifies this: if you make
many measurements of non simultaneous observables, then the product
of the standard deviations of their measured values has a lower bound
(∆A∆B ≥ ~/2).

6.2 Double slit experiment
• If light from a point source passes through a pair of slits, then you get a

diffraction pattern (Young’s slits experiment). This is easily explained in
terms of waves. It is possible to perform the experiment one photon at a
time, producing one dot at a time on the recording screen. This is also
particle like.

• If one slit is closed, a single slit diffraction pattern is produced

• If a slit changes from open to closed once the photon is in-flight, the
pattern is still correct for the single slit.

• If we monitor the slits we can observe whether the photon goes to one or
the other.

65
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• We can make this quantitative

|Ψ〉 = α|A〉+ β|B〉

• where |A〉 is the wave from slit A, and |B〉 is the wave from slit B. Thus
|〈~r|Ψ〉|2 = |α|2|〈~r|A〉|2 + |β|2|〈~r|B〉|2 + αβ∗〈B|~r〉〈~r|A〉 + α∗β〈A|~r〉〈~r|B〉,
which gives interference.

• We introduce a two state monitor with state vectors |M〉 (registered that
a particle is present) and |M̄〉 (did not register that a particle is present).
The motion of a particle after passing through a slit is defined by its mo-
mentum vector ~k. Therefore the amplitudes that tell us what the proba-
bilities are that the particle is travelling with a prticular momentum after
passing through a particular slit are

〈~kM |Ψ〉 = α〈~kM |A〉+ β〈~kM |B〉
〈~kM̄ |Ψ〉 = α〈~kM̄ |A〉+ β〈~kM̄ |B〉

• If 〈~kM |B〉 = 〈~kM̄ |A〉 = 0 then we know which slit the particle went
through.

6.3 Beam splitter experiment

Figure 6.1: Beam splitter experiment

|A〉 → 1√
2
(|B〉+ i|C〉)

→ 1√
2
(i|D〉 − |E〉)

→ 1√
2
(i[

1√
2
(|G〉+ i|F 〉)]− [

1√
2
(|F 〉+ i|G〉)]) = −|F 〉
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• A measurement at M or N gives a 50% chance of detection.

• If an obstruction is placed at N then

|A〉 → 1√
2
(|B〉+ i|C〉)

→ 1√
2
(|B〉 − |E〉)

→ 1√
2
(|B〉 − 1√

2
(|F 〉+ i|G〉))

• Thus the photon strikes D1 and D2 with equal probability.

• If we remove Y, then the final state is 1√
2
(i|D〉 − |E〉). Therefore D1 and

D2 respond with equal probability.

• Note that we can insert or remove Y after the photon has left X and we
get the same results.

6.4 Copenhagen Interpretation
• This is a scheme for providing outcomes of measurements, and not for

explaining mechanisms.

• Collapse of the wave function: the system enters an eigenstate during a
measurement.

• Principle of complementarity: mutually exclusive descriptions can be ap-
plied to a quantum system, but not simultaneously (for example, waves
and particles).

• This interpretation has several problems, despite being the most com-
monly used one:

– Measurements are macroscopic and deterministic. This interpreta-
tion says the microscopic world is probabilistic. Where is the bound-
ary?

– A measurement involves interactions between the quantum system
and measuring device. If this obeyed Schroedinger’s equation it
would not lead to the collapse of the wave function. Thus we have
an inconsistency.

– Complementarity is vague and may not even be true.

– It appears to reject objective reality.

6.5 Hidden Variables
• Statistics is about averaging over many measurements. This averaging

could be hiding the effects of variables we are not treating explicitly. For
example, the kinetic theory of gases allows us to talk about pressure,
temperature etc by averaging over the atomic positions and momenta.
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• The main contenders for hidden variable theory are

– de Broglie pilot wave theory

– David Bohm’s (from Birkbeck College) quantum force theory

6.6 Non-Locality and the Einstein, Podolsky, Rosen
(EPR) Paradox

• The EPR thought experiment proceeds as follows

– A single stationery particle explodes into two identical fragments

– Momentum conservation requires that the measured momentum of
the two particles be equal and opposite

– Symmetry requires that each particle has travelled the same distance

– Does measurement of position (momentum) of A reveals the position
(momentum) of B.

– This measurement gives B a fixed position (momentum) instanta-
neously.

• David Bohm modified the experiment to use spin.

– Two spin 1
2 particles, with zero total spin, move apart. The spin part

of the wave function is 1/
√

2(α1β2 − β1α2).

– Measurement of one spin causes collapse of the wave function to α1β2

or β1α2, so if particle 1 is spin up, then particle 2 is spin down, and
vice versa.

– Thus if the z component of the spin of particles 1 and 2 are measured
then they will have opposite values. But if the z component of the
spin of particle 1 is measured, and then the x component of the spin
of particle 2, there will be a 50% chance of getting either of the two
possible values.

– If the x component of the spin had been measured for particles 1 and
2, then particle 2 would have the opposite value to particle 1.

• Special relativity can introduce a further complication. Depending on
your state of motion, the order of two measurements can change:
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Figure 6.2: Relativistic measurement

• If A and B flashlight when they are making measurements, OL and OR

might disagree about the order in which pulses reached them.

6.7 Bell’s Inequalities

• These are a test of the constraints of hidden variable theories

• Bell provided inequalities that must hold between joint probabilities of
spin measurements made on two particle systems and that are a necessary
consequence of their being separate entities.

• Consider spins in a singlet state |χ〉 = 1√
2
(|αβ〉 − |βα〉)

• Consider the correlation between measurements K̂ = (Ŝ1 · â)(Ŝ2 · b̂)

• The expectation value of the correlation is E(â, b̂) = 〈K〉 = 〈χ|(Ŝ1 · â)(Ŝ2 ·
b̂)|χ〉 = −â · b̂ = cos γ

• Suppose that λ is a hidden variable that allows the system to be com-
pletely defined. Each spin 0 system has a value for this variable. Let the
probability distribution of λ be beP (λ), with

∫
dλ P (λ) = 1.

• Let measurement of spin 1 be ~/2A(â, λ), and of spin 2 be ~/2B(b̂, λ).
A,B ∈ {±1}. Since S = 0, A(â, λ) = −B(â, λ).

• Correlation coefficient

ε(â, b̂) =
∫

P (λ)A(â, λ)B(b̂, λ) dλ

⇒ ε(â, b̂)− ε(â, ĉ) =
∫

P (λ)[A(â, λ)B(b̂, λ)−A(â, λ)B(ĉ, λ)] dλ
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= −
∫

P (λ)A(â, λ)A(b̂, λ)[1 + A(b̂, λ)B(ĉ, λ)] dλ

⇒ |ε(â, b̂)− ε(â, ĉ)| ≤
∫
|P (λ)A(â, λ)A(b̂, λ)[1 + A(b̂, λ)B(ĉ, λ)]| dλ

P (λ) ≥ 0

1 + A(b̂, λ)B(ĉ, λ) ≥ 0

|A(â, λ)A(b̂, λ)| = 1

⇒ |ε(â, b̂)− ε(â, ĉ)| ≤
∫

P (λ)[1 + A(b̂, λ)B(ĉ, λ)] dλ

⇒ |ε(â, b̂)− ε(â, ĉ)| ≤ 1 + ε(b̂, ĉ)

⇒ |ε(â, b̂)− ε(â, ĉ)| − ε(b̂, ĉ) ≤ 1

• If â, b̂ and ĉ lie in a plane with b̂ bisecting the angle between â and b̂, then

E(â, b̂) = − cos γ

E(â, ĉ) = − cos 2γ

E(b̂, ĉ) = − cos γ

⇒ | − cos γ + cos 2γ|+ cos γ ≤ 1

• The inequality is violated for 0 ≤ γ ≤ π/2.

6.8 The Aspect Experiments

• Measurements were made on the polarisation of a pair of photons emitted
by a calcium atom.

• The atom was put into an excited state by two lasers

• It then relaxes in two stages releasing two photons

• These photons then meet polarisers: they either pass through or are re-
flected. The detectors record +1 if the photon is found to be linearly
polarised parallel to the polariser, or -1 if normal to it.

• For an emitted photon pair |χ〉 = 1√
2
(| ↑↑〉+ | →→〉)

• We defined coincidence rates by N++(â, b̂) = the rate for recording +1 in
both detectors etc. The correlation function is then

E(â, b̂) =
(

N++ + N−− −N+− −N−+

N++ + N−− + N+− + N−+

)

• We now define X = ε(â, b̂) + ε(â, b̂′)− ε(â′, b̂) + ε(â′, b̂′)

• For a local real theory we have the condition −2 ≤ X ≤ 2

• Aspect chose â· b̂ = â′ · b̂ = â′ · b̂′ = cos φ, and â· b̂′ = cos 3φ. The inequality
was violated.
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• This shows that the hidden variable theory must be nonlocal.

Figure 6.3: Calcium energy levels

6.9 The Problem of Measurement

• Copenhagen interpretation

– During measurement the wave function collapses to an eigenstate

– Only then do we have knowledge of the quantum system

• But

– When does measurement take place?

– How do we separate system, apparatus and observer?

– When does the collapse of the wave function take place?

• The von Neuman chain

– Supposed polarised light is incident at 450 to a polariser.

– The photon is in a superposition of two states: one parallel and one
perpendicular to the polariser.
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– The measuring apparatus will thus have two states, and prior to
measurement will be in a superposition.

– The measurement apparatus only makes a measurement when a mea-
surement is made on it.

– Etc.

• Consider the following example

– Suppose we have an electron that can be in one of two spin states
|α〉 and |β〉, and that we have a measuring device with two lights on
it: one for up (|u〉) and one for down (|d〉) .

– Before any interaction the system is in the state |B〉 = (Cα|α〉 +
Cβ |β〉)⊗ (au|u〉+ ad|d〉)

– After the interaction it becomes |A〉 = Cα|α〉 ⊗ |u〉+ Cβ |β〉 ⊗ |d〉
– Which light is shining? It is not defined.

– To collapse the wave function we need a second measurement. Etc.

6.10 Schrodinger’s Cat

• This famous thought experiment highlights the nature of the measurement
problem.

• A cat in a sealed box with a Geiger counter, some radioactive material, a
flask of hydrogen cyanide, and a mechanism for breaking the flask.

• After one hour this radioactive material will have undergone either zero
or one decay events. If there was a decay the Geiger counter will register
this, and cause the flask of hydrogen cyanide to break, killing the cat.

• From quantum mechanics, after one hour the state of the system will be
|Ψ〉 = Ca|Nodecay; Cat alive〉+ Cd|Decay; Cat dead〉.

• Before opening the box the cat is in a superposition of states. After the box
is opened, and a measurement is made, the cat’s wave function collapses
into one state or the other.

• At which point is the fate of the cat determined?

6.11 Mind and Matter

• It is possible that consciousness leads to collapse of the wave function

• But how complex a being is needed for this?

• What happened before life appeared in the universe?
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6.12 Indelible Records

• An isolated quantum system evolves reversibly according to Schroedinger’s
equation.

• If a measurement is made then an irreversible process takes place that
cannot be undone.

• If the system could be described by a single wave function before the
measurement, this is no longer true afterwards. The system is in a mixed
state.

• Bohr spoke of a process of irreversible amplification. Quantum effects are
amplified to the classical level.

6.13 Path Integral Approach

• This was developed by Richard Feynman

• It calculates the probability that a particle starting at position a at time
ta arrives at b at time tb.

• This approach does not work with wave functions, but instead takes the
view that the particle travels every single trajectory between a and b.

• The probability is given by the square of the following term

K(b, a) =
∑

all paths a→b

e−S(a,b)/i~

• S(a, b) is the action associated with a path and is given by

S(a, b) =
∫ tb

ta

dt (K.E.− P.E.)

• The classical path is the one with the minimum value of the action.

• The final probability is a result of interference between neighbouring paths.
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Figure 6.4: Path integral

6.14 The Many Universes Interpretation

• This was first proposed by Hugh Everett

• When a measurement is made the universe splits into a number of copies in
each of which one of the outcomes is realised. There is no communication
between the universes.

• For example, if we measure an electron spin, the universe branches into
two copies, one in which the electron has spin up, and the other in which
it has spin down.

• Proponents point out its simplicity: only one assumption is needed.

• Opponents protest that invoking infinitely many universes to solve the
problem of wave function collapse is excessive.

• It also does not explain what a measurement is.

• David Deutsch has reformulated the theory to work with a pre-existing
finite number of universes. When quantum alternatives are presented, the
universes partitioned themselves into groups, in each of which a different
outcome happens. The universes exist in parallel and change in content
completely in accordance with the principle of increase of entropy.
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6.15 Alternative Histories

• A history is a sequence in time of events.

• There is no distinction between microscopic and macroscopic, no split
between system, apparatus and environment.

• Focuses on probabilities for different histories.

6.15.1 Fine-grained and coarse-grained histories

• This approach was proposed by Gell-Mann and Hartle.

• It does not assign probabilities to histories, but instead a decoherence
functional D(A,B) to a pair of histories A and B.

• If (Aor B) is the combined history of A or B then

D(Aor B, A or B) = D(A,A) + D(B,B) + Di(A,B)
Di(A,B) = D(A,B) + D(B, A)

• Where Di is the interference term. If Di(A,B) 6= 0, then A and B cannot
be assigned probabilities as they interfere with each other. If Di(A,B) =
0 then D(A,A) and D(B, B) can be interpreted as the probabilities of
histories A and B respectively.

• Fine-grained histories give as complete a description of the universe as is
possible. Interference between two fine-grained histories does not generally
vanish.

• In coarse-grained histories only certain things are followed, and with a
limited amount of detail. The rest of the universe is not followed.

6.15.2 Decoherence

• Two histories decohere if their interference term is zero.

• Decoherence occurs because of the entanglement of what is followed with
what is not. It gives rise to branching of histories into distinct alternatives
with real probabilities, and thus can explain the transition to the classical
domain.

• Consider Schroedinger’s cat. |cat〉 =
∑

l al|l〉+
∑

d bd|d〉. There are many
scenarios involving the living cat, and many involving the dead cat. These
interfere, and after the decoherence time they cancel out. Thus there is
no interference between live and dead.

6.16 The Ghiradi-Rimini-Weber scheme

• Schroedinger’s equation is modified by the introduction of random hits.
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• At random times the wave function is multiplied by a narrow Gaussian
(about once every 108 years per particle). This causes collapse of the wave
function and suppresses linear superpositions.

• However, it is ad hoc, not based on known physical laws, and involves
small violations of energy conservation.

6.17 Gravitationally Induced Reduction

• Roger Penrose believes that incorporation of gravity into quantum me-
chanics could provide an explanation of wave function reduction as a real
physical process.

• Suppose a system evolves by Schroedinger’s equation into a linear su-
perpositions of two states that occupy significantly different locations in
space. The evolved state must then involve a superpositions of gravita-
tional fields with different space-time geometries. Reduction of the wave
function could occur if the geometries of the superposed states became so
different that they could not coexist.

6.18 Quantum Information

• The unit of information is the bit (binary digit), equal to 0 or 1.

• A classical system can reside in one of the two states.

• A quantum system can exist in a superposition of both states at once:
|Ψ〉 = C0|0〉+ C1|1〉.

• These qubits can be represented by electron spins, photon polarisations,
atomic energy levels, states of trapped ions...

6.18.1 Quantum computers

• For a qubit, the probability of measuring 0 is |C0|2, and of measuring 1 is
|C1|2.

• A classical register composed of L bits can store one of 2L possible num-
bers.

• A quantum register can store all 2L possible numbers simultaneously in
superposition. But we can only see one of them after a measurement.
Thus this is not useful for bulk storage.

• Operations can be performed simultaneously on all the numbers, so that
2L parallel operations can be performed.

• This can produce important savings in time and memory for some algo-
rithms

– searches
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– factorisation (the factorisation of a 100 bit number takes about 1044s
on a classical computer, but only a few seconds on a quantum com-
puter. The age of the universe is 1017s).

• Logical gates have already been demonstrated.

• A major obstacle is decoherence (the destruction of the coherent state).

6.18.2 Quantum cryptography
• Cryptography is the art of concealing the content of messages.

• We know how to generate an unbreakable cipher. You need a genuinely
random string of bits with which to modify your message (for example,
using exclusive or). The encoded message can now be sent by a public
channel (for example electronic mail).

• The problem is to transmit this random series of bits (the key) between
two people (Alice and Bob) without others being able to intercept it.

• Quantum mechanics can be used to solve the problem of communicating
the key.

• One scheme is the following

– Alice has a source of photons and two polarisers. One polariser lin-
early polarises the light vertically (0) and the other at 450 (1).

– Bob has two analysers. One measures photons linearly polarised at
-450 (0) and the other horizontally (1).

– Alice chooses a polariser at random and sends a photon to Bob.
– Bob chooses an analyser at random and records whether he detects

a signal or not.
– For example, if Alice sends a vertical photon and Bob uses a -450

analyser, then Bob has a 50% chance of detecting a photon. If he
does detect a photon both Bob and Alice selected the same value for
the bit. Bob tells Alice if he detected the photon or not.

– Bob and Alice only retain bits for which a photon was detected and
use this string as the key.

• A second scheme uses entangled photons

• a supply of pairs of entangled photons is available to Alice and Bob.

• From each pair, one goes to Alice and one to Bob.

• They each make a series of plane polarisation measurements, half the
time distinguishing between perpendicular directions, and the other half
between 450 rotated directions.

• When the measurements are finished they exchange information about
what measurement was made on each photon so that they know on which
occasions they made the same measurement. Then by the EPR effect they
know that common measurements give the same result.
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• This produces a string of random bits.

• If there is an eavesdropper (Eve), then Alice and Bob will not always get
the same result, which can be detected by comparing a fraction of their
results.

6.18.3 Quantum Teleportation
• We can make an exact replica of a photon at a remote location.

• Consider the following four Bell states

|Ψ+〉 =
1√
2
(|10〉+ |01〉)

|Ψ−〉 =
1√
2
(|10〉 − |01〉)

|φ+〉 =
1√
2
(|11〉+ |00〉)

|φ−〉 =
1√
2
(|11〉 − |00〉)

• We can switch between these Bell states by means of the following oper-
ations

– phase shift (change of sign)

– bit flip (|0〉 → |1〉 or |1〉 → |0〉)
– combined phase shift and bit flip

– identity operation

• The states can all be generated and operated on using a combination of
non linear crystals, polarisers and mirrors.

• Alice wishes to teleport a photon (A) in state |T 〉 = u|1〉+ v|0〉 to Bob.

– A pair of entangled photons are sent to Alice and Bob (B and C).

– Alice performs a joint measurement on photons A and B, and obtains
one of the Bell states with probability 1

4 . This collapses photon C
into a well-defined state uniquely related to the state of A.

– Alice then transmits the result of her measurement to Bob over a
public channel.

– Bob can then perform the required unitary transforms on C to pro-
duce a photon in state |T 〉.

• Example

• the ancillary photons are prepared in state |Ψ−〉. The three photon state
of A, B and C is

|Ψ〉 =
1√
2
[u|110〉+ v|010〉 − u|101〉 − v|001〉]
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• This can be regrouped in terms of Bell states

|Ψ〉 =
1
2
[u|φ+0〉−v|φ+1〉+u|φ−0〉+v|φ−1〉−u|Ψ+1〉+v|Ψ+0〉−u|Ψ−1〉−v|Ψ−0〉]

• Suppose Alice, in her Bell states measurement, finds |Ψ−〉. Then C is
projected into the state |c〉 = u|1〉+ v|0〉 = |T 〉.

• Alice tells Bob the result of her measurement, and Bob knows he need do
nothing.


