

1

The non-linear polarisation We can write the induced polarisation as the sum of a linear and a non-linear term $\mathbf{P} = \mathbf{P}^{\mathrm{L}} + \mathbf{P}^{\mathrm{NL}}$ where $P_i^{L} = \varepsilon_0 \chi_{ii}^{(1)} E_i$ the linear polarisation $P_i^{\rm NL} = \sum_{i=1}^{\infty} P_i^{(n)}$ the non-linear polarisation and $P_i^{(n)} = \varepsilon_0 \chi_{iik}^{(n)} E_i E_k \dots E_m$ n amplitudes $\cdot P^{(n)}$ generally has a number of frequency components (for n even(odd) all linear combinations of an even(odd) number of the incident frequencies up to n). e.g. For n=2 and $E = E_1 \cos \omega_1 t + E_2 \cos \omega_2 t$ there are frequency components at $\omega = 0, 2\omega_1, 2\omega_2, \omega_1 - \omega_2, \omega_1 + \omega_2$ • The second-order susceptibility at frequency w_n is a function of three frequencies: $\chi^{(2)}(\omega_n,\omega_1,\omega_2)$ Under suitable conditions, one particular frequencycomponent can dominate.

Symmetry considerations
$P^{NL} = \varepsilon_0 \chi^{(2)} E^2 + \varepsilon_0 \chi^{(3)} E^3 + \dots$
Under reversal of the coordinate system: $\chi^{^{(2)}} o \widetilde{\chi}^{^{(2)}}$
$-P^{NL} = \varepsilon_0 \widetilde{\chi}^{(2)} E^2 - \varepsilon_0 \widetilde{\chi}^{(3)} E^3 + \dots$
Even-order terms observed in media without inversion symmetry (anisotropic crystalline materials)
e.g. second-harmonic generation,
(frequency components are linear combinations of an even number of frequencies)
Odd-order terms observed in media inversion symmetry (gases, liquids and isotropic crystals)
e.g. third-harmonic generation, (frequency components are linear combinations of an odd number of frequencies)

Work out all the terms:

$$\frac{\partial^{2} E_{1}}{\partial z^{2}} = -k_{\omega}^{2} \mathcal{E}_{1} \exp i(\omega t - k_{\omega} z)$$

$$\frac{\partial^{2} E_{2}}{\partial z^{2}} = -k_{2\omega}^{2} \mathcal{E}_{2} \exp i(2\omega t - k_{2\omega} z)$$

$$-2i k_{2\omega} \frac{\partial \mathcal{E}_{2}(z)}{\partial z} \exp i(2\omega t - k_{2\omega} z)$$

$$+\frac{\partial^{2} \mathcal{E}_{2}(z)}{\partial z^{2}} \exp i(2\omega t - k_{2\omega} z)$$

$$k_{2\omega} \frac{\partial \mathcal{E}_{2}(z)}{\partial z} \gg \frac{\partial^{2} \mathcal{E}_{2}(z)}{\partial z^{2}} \qquad \text{since } E_{2} \text{ varies little on the scale of a wavelength (slowly-varying envelope approximation).}$$

$$\frac{n_{\omega}^{2}}{c^{2}} \frac{\partial^{2} E_{1}}{\partial t^{2}} = -k_{2\omega}^{2} \mathcal{E}_{1} \exp i(\omega t - k_{\omega} z)$$

$$\mu_{0} \frac{\partial^{2} P^{(2)}}{\partial t^{2}} = -\frac{4\omega^{2}}{c^{2}} \chi^{(2)} \mathcal{E}_{1}^{2} \exp 2i(\omega t - k_{\omega} z)$$

Substitute everything into the non-linear wave equation and compare coefficients of $\exp 2i\omega t$ on both sides of the equation:

$$\frac{\partial \boldsymbol{\mathcal{E}}_{2}(z)}{\partial z} = -2i \frac{\omega^{2}/c^{2}}{k_{2\omega}} \chi^{(2)} \boldsymbol{\mathcal{E}}_{1}^{2} \exp 2i \Delta k z$$

where $\Delta k \equiv \frac{1}{2}k_{2\omega} - k_{\omega}$

For $\mathcal{E}_2(0) = 0$ the solution gives:

$$\mathcal{E}_{2}(L) = -i \frac{2\omega^{2}/c^{2}}{k_{2\omega}} \chi^{(2)} \mathcal{E}_{1}^{2} \exp(i\Delta k L) L \frac{\sin \Delta k L}{\Delta k L}$$

So the intensity of the second-harmonic wave is proportional to

$$I_{2}(L) = \left| \chi^{(2)} \right|^{2} I_{1}^{2} L^{2} \frac{\sin^{2}(\Delta k L)}{(\Delta k L)^{2}}$$

The coherence length, Lc, is given by $L_c = \pi / \Delta k$

The second-harmonic intensity increases for L up to L_c , then decreases.

The photon picture

The energy of a photon of angular frequency ω is $\hbar\omega$ and its momentum $\hbar k = \frac{h}{2}$

Second-harmonic generation conserves energy because two photons of frequency ω are destroyed for every one at frequency 2ω created:

The condition for maximum efficiency in the second-harmonic generation process is

$$\Delta k \equiv \frac{1}{2}k_{2\omega} - k_{\omega} = 0$$

Multiplying by $2\hbar$, we get $~\hbar k_{2\omega}-2\hbar k_{\omega}=0~$, which is just an expression of momentum conservation.

Since
$$k_{\omega} = \frac{n_{\omega}\omega}{c}$$
 and $k_{2\omega} = \frac{n_{2\omega}(2\omega)}{c}$

the condition for momentum to be conserved is

$$n_{2\omega} = n_{\omega}$$

The art of arranging for $n_{2\omega} = n_{\omega}$ is known as phase-matching or index-matching.

Phase-matching in secondharmonic generation

• SHG requires a medium without inversion symmetry, an anisotropic crystalline material (e.g. KDP)

• An anisotropic crystal is also birefringent, so we can profit from the frequency dependence of the birefringence to achieve phase-matching.

e.g. second-harmonic generation in a negative uniaxial crystal (KDP) with normal dispersion (n_{2w} > n_w)

Phase-matching is achieved for an appropriate propagation direction and polarisation (e.g. Type 1 phase-matching).

$$\hbar\omega_{pump} \Rightarrow \hbar\omega_{signal} + \hbar\omega_{idler}$$

whilst the escape from the cavity of the idler beam prevents the reverse process:

$$\hbar\omega_{\rm signal} + \hbar\omega_{\rm idler} \Rightarrow \hbar\omega_{\rm pump}$$

The result is a widely-tunable source of coherent radiation. Tune by varying cavity length (can be achieved by changing temperature of crystal).

- e.g. Titanium-Sapphire laser (Ar+ laser pumped) temperature tuning range 700-1100 nm (for $10^{\circ}C$)
- e.g. LiNbO3 (doubled Nd:YAG pumped) tuning range 980-1150 nm

Third-harmonic Generation

$$\vec{P}^{(3)}(3\omega) = \varepsilon_0 \chi^{(3)}(3\omega; \omega, \omega, \omega) \left| E(\omega) \right|^2 \vec{E}(\omega)$$

Can't use birefringence to ensure phasematching in an isotropic medium, but need

$$n_{3\omega} = n_{\omega}$$

Solution:

Use gases e.g. alkali-metal vapour
 Exploit resonant enhancement

Perturbation theory:

