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NOTE 2: GENERAL PROPERTIES 
OF GALAXIES 

1. Introduction 
Galaxies show a wide range of sizes, shapes and 
properties. In this chapter I shall first discuss the 
classification of galaxies according to their optical 
shapes and will go on to discuss some of their more 
general properties. I shall return to some of these 
properties later for more specific discussion. 

2. Morphological Classification 
2.1 Hubble’s Classification 
There are many schemes for classifying galaxies, even 
if we confine ourselves to those schemes based on 
optical appearances. Which scheme one should adopt 
depends largely on what one wants to do with the 
classification. For many purposes, and certainly for ours 
in this course, Hubble's morphological classification is 
adequate. 

On the basis of their appearance, Hubble split galaxies 
into two groups, regular and irregular (Irr). He divided 
the regular galaxies into two basic types, elliptical (E) 
and spiral (S). The class of spirals was additionally 
divided into ordinary (SA, but more usually just S) and 
barred (SB) galaxies. This scheme is shown in Hubble's 
tuning-fork diagram of Figure 2-1. 

 

E3 E5 E0E0 S0
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SBa
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SBb
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SBc

Irr

 
Figure 2-1 Hubble’s Classification Scheme 

I emphasise that the sequence is merely one of 
classification and, although it reflects different origins 
and histories for the various classes of object, it 
certainly does not represent the evolutionary track of an 
individual galaxy. 

2.2 Elliptical Galaxies 
The class of ellipticals is sub-divided into a sequence 
numbered from 0 to 7 according to the ellipticity of the 
shape of the galaxy as projected on to the plane of the 
sky. This is also, of course, its shape on a photographic 
plate or CCD. In general an elliptical is classed as En 
where n is given by 
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where a and b are the semi-major and semi-minor axis 
of the image respectively, and ROUND[x,r] denotes that 
the quantity x is to be rounded to r decimal places.. The 
ellipticity e of the image is defined by 

 
a
be −=1:  (2.2) 

so that 

 [ ]0,10ROUND en =  (2.3) 

Figure 2-2 shows the giant E0 galaxy M87. 

 
Figure 2-2 AA Telescope image of the giant elliptical 

galaxy M87 (NGC 4486). [Copyright AAO/ROE]. 

It is important to realise that what we see is the 
projection of the true shape of a galaxy on to the plane 
of the sky. We automatically tend to adjust for this 
when looking at images of spiral galaxies. We assume, 
with good reason as I shall show later, that the “disc” 
part of a spiral galaxy is basically circular and that, if it 
appears elongated, that is because it is tilted to our line-
of-sight. In the case of an elliptical galaxy, however, we 
tend to think of the shape of the projected image as 
being the shape of the galaxy itself. This may not be 
true. If an elliptical galaxy were shaped like a rugby 
ball, for example, its image would be circular if its long 
axis were aligned along the line of sight. Similarly, a 
rugby-ball shaped galaxy aligned in this way would be 
classified as an E0 galaxy,  

Could all “elliptical” galaxies be flat-ish discs, their 
ellipticity merely being a projection effect? Perhaps 
they are merely spiral galaxies with no nuclear bulge 
(see below) viewed at various angles so that an E0 
galaxy would a bulge-less spiral observed face on. Let 
us test this hypothesis1. 

Consider Figure 2-1, which shows a disc of radius a and 
thickness c inclined at an angle θ to the line of sight to 
an observer. It is easy to show that, for c equal to zero, 
the projected image of the disc appears to the observer 

                                                           
1 This is a useful demonstration of the use of statistical arguments in 
astronomy. 



ASTM-052 Extragalactic Astrophysics  Note 2 
 

© P E Clegg 2001 - 2 - Version 3.0 (02/01/01) 

as an ellipse with semi-major axis a and semi-minor 
axis b, where 

 θcosab = , (2.4) 

so that 

 θcos1 −=e . (2.5) 

 

Line of sight

Normal to disc

Projected semi-minor axis b

Radius of disc a

Angle of inclination θ

Thickness of disc c

 
Figure 2-3. A thin disc model of ellipticals. 

If c is non-zero, the image is no longer an ellipse. It is 
nevertheless easy to show - try it! - that the effective 
value e′ of the ellipticity, defined as unity minus the 
ratio of the maximum thickness t to the width w of the 
image (cf. Figure 2-4) is given by 
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The maximum value of e for a thick disc is therefore 
ac−1  and occurs when 2πθ = . 

t

w  
Figure 2-4. Aspect ratio of disc. 

The simplest argument against the hypothesis is that the 
flattest ellipticals are E7, corresponding to a value of 0.3 
for c/a. This is very much greater than the observed 
value for the discs of spirals. Alternatively, we should 
have to suppose that all ellipticals conspire to be 
inclined by no more than about 75° (cf. exercise) to our 
line of sight, an unlikely state of affairs. 
A more detailed argument involves the observed 
frequency distribution of ellipticals amongst the various 
classes. Let us assume that the orientation of the 
hypothetical flat discs is random. Then the normal to the 
disc shown in Figure 2-5 can point in any direction. 
What is the probability of its pointing in the range of 

angles θ to θ + dθ as shown? Ignore for the moment the 
thickness of the disc. Let the length of the normal be r. 
Then the area dA of the annulus on the circumscribed 
sphere between θ to θ + dθ  is given by 

 θθπ rdrdA ×= sin2 . (2.7) 

 

θ

dθ

r

Line of sight

 
Figure 2-5. Alignment geometry. 

The total surface area A of the hemisphere into which 
the normal can point2 is 2πr2 so that the probability 
dP(θ) of its being in the above range of angles is given 
by 

 ( ) θθ
π

θθπ
θ d
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dr
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dAdP sin

2
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2

2
=== . (2.8) 

From equation (2.6), with c set equal to zero, we have 

 θθ ded sin=′  (2.9) 

so that, from equation (2.8), 

 ( ) eddP ′=θ . (2.10) 

The probability dP(e′) of the observed value of e falling 
in the range e′ to e′ + de′ is given by 

 ( ) ( ) eddPedP ′==′ θ , (2.11) 

where I have used equation (2.10). 

Equation (2.11) says that, if elliptical galaxies were thin 
discs, we should expect a uniform distribution of 
ellipticities; if they were thick discs, we should expect 
the relationship to hold until the inclination was such 
that the second term in equation (2.6) became important, 
that is at high ellipticities. 
Figure 2-6 shows schematically the observed numbers 
of galaxies as a function of ellipticity e. It is quite clear 
that the distribution of ellipticals does not follow the 
horizontal line expected of discs and that it cuts off at 
E7. It must therefore be accepted that elliptical galaxies 

                                                           
2Note that we only have to consider θ in the range 0 to π /2 because 
values greater than this simply mean that we are looking at the disc 
from the (presumably identical) other side.  
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are truly ellipsoidal in form3. But we find that, even 
within the class of ellipsoids there are tri-axial 
ellipsoids, oblate ellipsoids, prolate ellipsoids and 
spheroids; the image of the galaxy will not help us to 
decide on the shape of any particular galaxy. An E0 
galaxy, for example, cannot be the projection of a tri-
axial ellipsoid but it could be prolate, oblate – viewed 
along the symmetry axis – or truly spheroidal. 

1.0 0.7 0.5 0.3 0

Thin disc

Sc

Thick disc

Sa

Ellipsoid

E

 

Figure 2-6. Observed distribution of ellipticities. 

2.3 Spiral Galaxies 
Although spiral galaxies are named after the structure 
that is so dramatically evident, the name does not 
convey the overall structure of these galaxies in the 
same way as does the name elliptical. The images of 
spiral galaxies consist of two main components, a disc 
(which is correctly inferred to be flat) and a nuclear 
bulge4. A better name for these galaxies is disc galaxies. 

As indicated in Figure 2-1, each branch (S and SB) of 
the spiral sequence is further sub-divided into a 
sequence running from a to c. 

 
Figure 2-7. AAT photograph of the Sc spiral galaxy 

NGC 2997. [Copyright AAO] 

                                                           
3 It can be shown that the projection of any ellipsoid on to a plane is 
an ellipse, regardless of the angle of projection. 
4 I shall show later that there are other components, which are not as 
obvious. 

Figure 2-7 shows the Sc (or SAc) galaxy NGC 2997 
whilst Figure 2-8 shows the SBb galaxy NGC 1365 

 
Figure 2-8. AAT photograph of the SBb barred spiral 

galaxy NGC 1365. [Copyright AAO] 

As might be expected, there are also intermediate cases 
such as Sab, a spiral between Sa and Sb, or SABb, a 
spiral halfway between a barred and unbarred spiral at 
position b in the sequence. 
The assignment of a place in the sequence depends upon 
the relative sizes of the bulge and disc components: the 
bigger the bulge relative to the disc, the earlier5 in the 
sequence is the galaxy put. Some Sc and SBc galaxies 
have almost non-existent bulges. Strongly correlated 
with the bulge-to-disc ratio is the tightness of winding 
of the spiral arms in the disc. Earlier Hubble types have 
tightly wound arms, later types much more open arms, 
as indicated schematically in Figure 2-1. There is also a 
correlation between the luminosity of a spiral and how 
well the arms are defined. Van den Bergh defined 
luminosity classes I – luminous with well-defined arms, 
to V – weaker with patchy arms. We shall see later that 
this correlation fits with our understanding of how spiral 
arms are formed. 

Figure 2-6 shows schematically the distribution of the 
ellipticity of the imaged discs of Sa and Sc spirals. Until 
the inclination becomes so large that the thickness of the 
disc begins to play a part, as predicted by equation (2.6), 
these curves obviously do follow the expected 
distribution for discs. You will also see from the curves 
that Sc galaxies have thinner discs than Sa galaxies, as 
also indicated in the figure. 

2.4 Lenticular Galaxies 
Figure 2-9 is an image of the galaxy NGC 1201, which 
looks rather like an elliptical but which has faint 
extensions of its long axis. Detailed photometry (see 
later) reveals that the isophotes – contours of constant 
surface brightness – of this galaxy are elliptical towards 
the centre but becomes open curves towards the edges, 
as sketched in Figure 2-1 for the object labelled S0. 

                                                           
5 Note the word “early” is not to be interpreted in terms of time but of 
the position of a galaxy in the Hubble sequence, going from left to 
right. 

Comment [PEC1]: Get 
original data. 
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These open isophotes suggest the vestiges of a disc-like 
structure viewed nearly edge on, although there is no 
evidence of spiral structure. Such lenticular galaxies are 
therefore in some sense intermediate between the most 
elongated ellipticals, E7, and true spirals. Some S0 
galaxies show evidence of a bar-like structure and may 
be classified as SB0. 

 
Figure 2-9. UKS image of the S0 galaxy NGC 1201. 

[Copyright AAO] 

2.5 Irregular Galaxies 
Hubble classified as irregular (Irr) those galaxies that 
appeared to have no recognisable form. We now 
distinguish two types of irregulars, IrrI [or Irr(m)] which 
look irregular but in which the distribution of material is 
rather regular, and IrrII [or Irr(o)] which really are 
irregular! An example of an IrrI, which accounts for the 
alternative designation, is the Large Magellanic Cloud 
(LMC), shown in Figure 2-10. The LMC has weak 
spiral structure and a bar. 

 

Figure 2-10. AAT photograph of the LMC. [Copyright 
AAO/ROE] 

IrrI galaxies may be thought of as an extension of the 
Hubble sequence of spiral galaxies to the point where 

the nuclear bulge is non-existent and the arms so loose 
that the structure becomes almost unrecognisable. 
Indeed, de Vaucouleurs inserts an Sd class between Sc 
and IrrI. Irregulars are, therefore, sometimes put at the 
right-hand end of the tuning-fork diagram, as in Figure 
2-1. 

 
Figure 2-11. KPNO 0.9m image of the irregular galaxy 

M82. [Copyright Association of Universities for 
Research in Astronomy Inc. (AURA)] 

Copyright Association of Universities for Research in 
Astronomy Inc. (AURA), all rights reserved 

Type IrrII is well illustrated by the galaxy M82, shown 
in Figure 2-11, which has almost certainly collided with 
its companion M81, resulting in massive star formation. 
I shall return to this sort of object later. 

2.6 Dwarf Galaxies 
The most numerous galaxies are dwarf ellipticals (dE) 
and dwarf irregulars (dIrr), as we shall see. There are no 
dwarf spirals 

2.7 Peculiar and Interacting Galaxies 
A number of galaxies did not fit conveniently into any 
of the classes discussed above; Hubble called these 
peculiar. Peculiar galaxies are not a well-defined class. 
Moreover, some galaxies which are classified as E or S 
have peculiarities associated with them and are 
designated (p), e.g. E0(p). I shall not deal with the 
entirety of peculiar galaxies; some will arise when I deal 
with active galaxies in a later chapter.  
Of particular current interest, however, are interacting 
galaxies. Figure 2-12 is a Hubble Space Telescope true-
colour image of the Cartwheel Galaxy, located 150 Mpc 
away in the constellation Sculptor. We think that  the 
ring-like structure is the result of a smaller galaxy, 
perhaps one of the two objects to the right of the ring, 
passing right through the core of the Cartwheel. The 
effect of the impact would have been to create an 
expanding “ripple” in the interstellar medium, leaving 
massive star-formation behind it. This is traced by the 
blue knots containing hot young stars and by the loops 
and bubbles of gas created by supernovae. 
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Figure 2-12. Cartwheel galaxy. [Copyright Kirk Borne 

(ST ScI), and NASA)] 

The Cartwheel was probably a normal spiral prior to the 
collision and spiral structure is beginning to re-emerge 
in the form of faint “spokes”. 

 
Figure 2-13. The Antennae. [Copyright AURA] 

Figure 2-13 is another example of interaction between 
galaxies and shows the effects of a close encounter 
between two galaxies on star-formation. These galaxies 
have also been studied in detail by the Infrared 
Astronomy Satellite (ISO), which has revealed more 
detail of the sites of star formation. 

Studies of such interactions can help us understand the 
processes of star formation in more normal situations. 
An example is the origin of globular clusters. As the 
Space Telescope Science Institute press release [1] said, 
“ ‘IThese spectacular images are helping us understand 
how globular star clusters formed from giant hydrogen 
clouds in space,’ [says] Francois Schweizer of the 
Carnegie Institution of Washington, Washington, D.C. 
‘This galaxy is an excellent laboratory for studying the 
formation of stars and star clusters since it is the nearest 
and youngest example of a pair of colliding galaxies.’ 
… Globular star clusters are not necessarily relics of the 
earliest generations of stars formed in a galaxy, as once 
commonly thought, but may also provide fossil records 
of more recent collisions.” 

3. Photometry of Galaxies 
3.1 Surface Photometry 
If we are to understand what is going on in galaxies, we 
certainly need to know how much power they radiate in 
all regions of the electromagnetic spectrum. I shall 
concentrate on optical wavelengths in this section and 
return to other regions of the spectrum later in the 
course. We are interested both in the total power 
generated and in how this generation is distributed 
throughout the galaxy, the latter being particularly 
important in trying to model the galaxy's density profile. 
Photometry of galaxies is difficult and the results are 
hard to interpret; I shall only outline those results that 
are of direct relevance to the course. 

Consider a source which radiates a total power L; we 
call L the luminosity of the source.  Assuming for the 
moment that this power is radiated isotropically (the 
same in all directions), then at the distance r of the Earth 
form the source, this power is spread uniformly over a 
sphere of area 24 rπ . The power per unit area, or flux 
density F, received by an observer at the Earth is 
therefore given by 

 24 r
LF

π
= . (2.12) 

The surface brightness or intensity I of the galaxy is 
defined as the flux-density received per unit solid angle 
Ω of the source: 

 
Ω

=
d
dFI : . (2.13) 

In general, I will depend on the angular position ( )φθ , , 
in some suitable set of co-ordinates, of the part of the 
galaxy we are looking at.  

If we know ( )φθ ,I , we can in principle estimate the 
total flux density emitted by the galaxy. From equation 
(2.13), we have 

 ( ) Ω= ∫ dIF
galaxy

,φθ . (2.14) 

The “edges” of galaxies are very poorly defined, 
however, and this estimate is prone to considerable error 
as we shall see shortly. 

We can see that the intensity of a source is independent 
of its distance. For consider a small element of the 
surface of the source with area dA which has luminosity 
dL and subtends and angle dΩ at the Earth. Then 

 Ω= drdA 2 . (2.15) 

From equation (2.12), this element emits flux density 
dF, where 
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24 r

dLdF
π

=  (2.16) 

so that, from (2.13), 

 ( )
dA
dL

d
dFI =
Ω

≡φθ ,  , (2.17) 

which is independent of r. 

So far I have not specified any particular wavelength 
range over which the intensity, flux density or 
luminosity are measured. If we measure over the whole 
range of wavelengths at which the emission is 
important, we speak of bolometric quantities Qbol, like 
Fbol for example. More usually, we are concerned with 
the emission over a restricted band of wavelengths and 
we use quantities Qλ, where the amount dQ of Q emitted 
in the wavelength range λ to λ+dλ is given by 

 λλ dQdQ = . (2.18) 

 The relationship between Qbol and Qλ is 

 ∫=
hs wavelengtall

bol λλ dQQ  . (2.19) 

 

3.2 Use of Magnitudes 
3.2.1 DEFINITION OF MAGNITUDE 

For historical reasons, astronomers usually use 
magnitudes for expressing the values of optical flux 
density. The magnitude m of a source with flux density 
F is defined by 

 ⎟⎟
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where Fo is some standard flux-density. Note the 
negative sign in the definition, which means that the 
more luminous the source, the smaller (algebraically) is 
its magnitude. If a source at distance r has luminosity L, 
we have from equations (2.6) and (2.20), 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

o
24

log5.2
Fr

Lm
π

 . (2.21) 

The absolute magnitude M of a source is defined to be 
the magnitude it would have if it were at a distance r10 
equal to 10 parsecs. From equation (2.10), therefore,  
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From equations (2.11) and (2.6), we have an expression 
for the distance r of the source in terms of its distance 
modulus m-M: 
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3.2.2 SURFACE BRIGHTNESS 

In terms of magnitudes, surface brightness μ is 
expressed, rather confusingly, in magnitudes per unit 
standard solid angle: 

 ( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
−=

o

,log5.2,
I

I φθφθμ  (2.24) 

where Io is the intensity corresponding to Fo in some 
standard solid angle Ωo: 

 
o

o
o Ω

=
F

I . (2.25) 

Note that, just as I is independent of the distance of the 
source (equation (2.17)), so is μ. The standard solid 
angle is chosen as 1 arcsec2 and the brightness μ is 
expressed in magnitudes per square arcsec. This 
terminology is misleading! Because of the logarithmic 
relationship between μ and I, the total magnitude of a 
galaxy is NOT given by the integral of ( )φθμ ,  over the 
angular extent of the galaxy: 

 ( ) Ω≠ ∫ dm
galaxy

,φθμ .  

We have, rather, that 

 ( )
⎥
⎥
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⎣
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,0.4-

o

o 10
F
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3.2.3 MAGNITUDE SYSTEMS 

As with quantities such as brightness or luminosity, we 
can either use the bolometric magnitude mbol or, more 
usually, the magnitude mλ at some particular 
wavelength λ: 

 ⎟⎟
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m  (2.27) 
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Figure 2-14. The U, B and V filters. 

The most common system is the UBV system in which 
magnitudes are measured using a set of in the 
U(ltraviolet), B(lue), V(isual) bands, as shown 
schematically in Figure 2-14. The central wavelengths 
λo, bandwidths Δλ and standard flux-densities Foλ are 
given in Table 2-1. 

 

 

 

Table 2-1 The UBV system. 

Magnitude mU mB mV 

Symbol U B V 

λo (μm) 0.365 0.440 0.550 

Δλ (μm)    

Foλ (Jy) 19 43 38 

1 Jy = 10-26 W m-2 Hz-1 

 

3.2.4 COLOURS 

The colour of an object between two wavelengths λ1 and 
λ2 is defined as the difference 

21 λλ mm − in the 
magnitudes of the object at those two wavelengths. 
From equation (2.27), we have 
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so that the colour is a measure of the ratio of the flux-
densities at the two wavelengths. The colour of gives us 
a (rather crude) measure of the spectrum of the object. 
That of a star tells us its spectral type, which itself 
depends upon the mass and age of the star. Hence the 
colours of galaxies can tell us about the ages of their 
stellar populations.  

The colours deriving from the UBV system are (U-B) 
and (B-V). Notice that, because of the negative sign in 
the definition of the magnitude, the smaller 
algebraically its values of (U-B) or (V-B), the more 
ultraviolet or blue, respectively, an object is. 

3.2.5 THE MAGNITUDES OF GALAXIES 

Because galaxies have ill-defined edges, it is difficult to 
decide where to stop in such integrations as those in 
equations (2.8) or (2.26). Astronomers therefore often 
use other, more or less arbitrary ways of estimating the 
total magnitude of a galaxy. The metric magnitude is the 
flux within an aperture of fixed angular diameter, such 
as 20 arcsecond. The problem with such an approach is 
obvious and is illustrated in Figure 2-15. Two galaxies, 
with the same linear diameter but at different distances 
from Earth, are seen through the same aperture; the 
more distant galaxy (left) fits well within the aperture 
whereas parts of the nearer galaxy (right) fall outside it 
and do not, therefore, contribute to the measured 
magnitude. 

 
Figure 2-15. Metric magnitude. 

The second method which is to measure the magnitude 
within a standard isophote, typically μB=25 (de 
Vaucouleurs) or μB=26.5 (Holmberg), where μB is the 
surface brightness in the B band. As the brightness of 
the night sky in the B band is typically 22 magnitudes 
per square arcsecond, you will realise that measuring 
out to these standard isophotes is no mean achievement.  

Corresponding to these isophotes are the de 
Vaucouleurs diameter Do – the diameter of the semi-
major axis out to μB=25 – and the  Holmberg radius RH 

– the radius  of the semi-major axis out to μB=26.5.  
Because μ(θ,φ) is independent of distance, absolute 
magnitudes and angular diameters deduced using this 
method are independent of the distance of the galaxy.  

Measured total blue magnitudes range from ~ 10 
(corresponding to ~ 106 Lsun) for dwarfs up to ~ -20 
(corresponding to ~ 1010 Lsun) for large galaxies. The 
corresponding values of Do range from ~ 1 kpc up to ~ 
100 kpc.  
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3.3 Photometry of Elliptical Galaxies 
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Figure 2-16. The de Vaucouleurs profile. 

Let IE(θ) be the surface brightness of an elliptical galaxy 
at a projected angular distance θ from its centre along 
its major axis. It is found that, for a large number of 
elliptical galaxies, IE(θ) follows the de Vaucouleurs θ 1/4 
law:  

 ( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
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⎝

⎛
−=

4/1

oE
EE exp0

θ
θθ II , (2.29) 

where θoE is the angular distance at which the brightness 
has fallen to 1/e of its central value. This form of IE(θ) is 
shown in Figure 2-16. To the extent that this law holds, 
it means that the light distribution in ellipticals can be 
described by two parameters, the central brightness IE(0) 
the scale-angle θoE Note how, after an initial rapid drop, 
IE(θ) falls of very slowly with angular distance from the 
centre; this is because the exponent depends only on the 
fourth root of θ. 

Equation 2.25 is more usually written in the form: 

 ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= 167.7exp

4/1

EE
e

eII
θ
θθθ . (2.30) 

The advantage of this form is that half the luminosity of 
the galaxy is emitted from within the “effective radius” 
θε. I shall continue to use the simpler form of 2.25 
(2.29). Note that other laws can be found which fit the 
observed distribution just as well within the accuracy of 
observation; see [2], for example. 

In terms of magnitudes, the de Vaucouleurs law 2.25 
becomes a linear relationship in θ1/4: 

 ( ) ( )0086.1 E

4/1

oE
E μ

θ
θθμ +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= . (2.31) 

Another successful fit for some ellipticals is the Hubble-
Reynolds law, given by 

 ( ) ( )
( )2

oH

H
H

1
0

θθ
θ

+
=

I
I . (2.32) 

We shall see later a natural explanation of this law. 
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Figure 2-17. Projection on the sky. 

You should realise that θ is a measure of the projected 
distance from the centre of the galaxy: at any given θ, 
we are seeing the radiation emitted from all points 
within the galaxy along the line of sight FN shown in 
Figure 2-17. What we really want to know is the 
luminosity J(R) emitted per unit volume of the galaxy, 
as a function of the linear distance R from its centre. In 
general, the relationship between J(R) and I(θ) is 
complicated but I shall illustrate a point by using a very 
simple case. Consider the so-called modified Hubble 
profile Ih(θ) for a spherically symmetric elliptical 
galaxy: 

 ( ) ( )
( )2

oh

h
h

1
0
θθ

θ
+

=
I

I . (2.33) 

It can be shown – try it if you like! – that this 
corresponds to a volume intensity distribution Jh(R) 
given by 
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Figure 2-18. Surface and volume brightness. 

Figure 2-18 shows Ih(θ) and Ih(R) plotted on the same 
graph. You will see that Jh(R) falls off more rapidly 
with θ than does Ih(θ). This is a general result: the 
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luminosity per unit volume of a galaxy is more 
concentrated towards the centre than the surface 
photometry (the projected luminosity). The generation 
of radiation is, therefore, more concentrated towards the 
centre of galaxies than is immediately apparent from the 
photometry. If we assume that the distribution of mass 
in stars follows the distribution of luminosity, we 
deduce that the mass of galaxies – in stars at least – is 
also more concentrated towards their central regions 
than appears from their surface brightness. We shall see 
later, though, that the distribution of total mass is not so 
concentrated. 

It is easy to calculate the total flux-density FE of an E0 
galaxy from the de Vaucouleurs profile (2.29); the result 
is 

 ( )0!8 E
2
oEE IF πθ= . (2.35) 

More generally, for an EI galaxy, it is easy to show that 

 ( )0!8
10

1 E
2
oEE InF πθ×⎟

⎠
⎞

⎜
⎝
⎛ −= . (2.36) 

If, istead of obeying the de Vaucouleurs law, the 
brightness of an elliptical were uniform out to θoE and 
zero outside this angle, then the total flux would be 
given by 

 ( )0E
2
oEE IF πθ= . (2.37) 

A real elliptical therefore radiates 8!, or approximately 
40,000, time as much as a uniform disc of radius θoE! 
This is because the intensity falls off rather slowly with 
distance from the centre of the galaxy, and the outer 
regions of the galaxy, - whose areas are bigger - 
contribute a lot of flux. 

3.4 Photometry of Spiral Galaxies 
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Figure 2-19. Surface brightness of disc galaxy. 

I shall first consider spiral galaxies with no distinctive 
nuclear spheroidal component, that is late Sc or Scd 
galaxies. Of course we tend to think that most of the 
brightness of the discs of spirals comes from the spiral 
arms. To some extent this is a trick of the brain; in fact, 
there is a substantial brightness underlying the arms as 

is shown schematically by the dotted curve in figure 
Figure 2-19, which is a schematic photometric scan 
across an Sc galaxy.. The difference between the full 
and dotted curves in this figure represents the 
contribution of the arms. The average underlying 
distribution ID(θ) disc of a spiral galaxy is well 
described by the equation6 

 ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

oD
DD exp0

θ
θθ II , (2.38) 

that is, an exponential expression in the first power of 
the radius θ. Again it is a remarkable result and means 
that the light distribution of the underlying spiral disc 
can be described by two parameters, the central 
brightness ID(θ) and the scale-factor θoD. Because we 
are dealing with a flat disc, there is no essential 
difference between ID(θ) and the luminosity emitted per 
unit volume of the disc. Equation (2.50) may also be 
taken, therefore, as representing the luminosity per unit 
volume as well as that per unit surface area. In terms of 
magnitudes, we have from equations (2.24) and (2.57), 
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where 
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It is easy to show that the total flux density FD of a 
spiral's disc is given by 

 ( )02 D
2
oDD IF πθ= . (2.41) 

Unlike an elliptical galaxy (cf. equation (2.35)), the disc 
of a spiral radiates only twice the flux of a uniform disc 
of radius θoD. This is because of the much faster fall-off 
of the disc's brightness with radius. The effect is even 
noticeable to the eye in photographs: spiral discs seem 
to come to an end much more abruptly than do elliptical 
galaxies. It is therefore somewhat less risky to use the 
brightness profiles to estimate the total luminosity of 
spirals than it is for ellipticals. 

What happens if we add a nuclear spheroidal component 
to the disc? Perhaps not too surprisingly, we find that 
the total brightness distribution IS(θ) is the sum of a 
term like (2.29) for the nucleus and one like (2.29) for 
the disc: 

 ( ) ( ) ( )θμθμθμ DNS +=  (2.42) 

where the intensity IN(θ) the nuclear bulge is given by 

                                                           
6 For simplicity, I consider only face-on discs. The results can easily 
be generalised. 
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Figure 2-20. Brightness of nucleus and disc of spiral. 

These two contributions in an imaginary Sc galaxy are 
shown schematically in Figure 2-1, which also shows 
the total surface brightness of the galaxy (excluding the 
arms). The scale-factor for the disc of this galaxy is 
5 kpc and that for the nucleus is 0.5 kpc. 

The relative contributions of the nuclear bulge and the 
disc components of spirals vary enormously along the 
Hubble sequence, from Sa to Scd. The scale-length RoD 
for the discs of spirals is in the range of about 1 to 5 
kpc; the corresponding length RoN for the bulge can be 
very much less. As the figure shows, though, this does 
not mean that the brightness of the nucleus falls off 
rapidly compared with the disc; the one-fourth power 
dependence in the nuclear exponent gives it a much 
lower rate of fall-off. 

It appears from the above discussion that, as far as the 
light distribution goes, we may regard a spiral as a disc 
surrounding a nuclear component that is rather like an 
elliptical galaxy. I shall show that there are other 
similarities between elliptical galaxies and the nuclear 
bulges of spirals, although there are differences too. 
You will not be surprised that lenticular galaxies have a 
similar behaviour to that of spirals. 

3.5 Colours of Galaxies 
Figure 2-21 is a schematic colour-colour plot of various 
types of galaxy. Also plotted is the locus of the colours 
of stars of different spectral types and the locus of the 
colours of blackbodies of various temperatures. The plot 
shows that elliptical galaxies are redder than spirals and 
that spirals get bluer as we move along the Hubble 
sequence from Sa through Sd to Magellanic irregulars. 
Note that, unlike stars of a particular spectral type, 
galaxies of a particular Hubble type occupy a broad 
region of the diagram. This reflects the fact that each 
galaxy is made up of a range of stars of different 
spectral types; the trend amongst the Hubble types is the 
result of different proportions of these stars. 
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Figure 2-21. Colour-colour plot for galaxies. 

On the whole, redder colours mean older stars so that on 
the whole the stars in E and S0 galaxies are older than 
those in spirals. Baade divided stars into Population I 
(Pop I), which are young, and Population II (Pop II) 
which are old7. We may conclude that ellipticals, 
lenticulars and the bulges of spirals consist 
predominantly of Pop II. The discs of spirals, on the 
other hand, contain many Pop I stars. Remember, 
however, that we are taking averages; we shall see later 
that there are stars in spirals that are just as old as those 
in ellipticals. More detailed study of the stars in galaxies 
confirms the above evidence of the colour photometry. 

4. Masses of Galaxies 
4.1 Introduction 
Knowing the masses of galaxies is important both for 
the study of galaxies themselves and for cosmology, 
where we want to be able to estimate the mean density 
of the universe. There are two basic methods of 
estimating galaxian masses – by photometry and by 
spectroscopy. The photometric method assumes that we 
know the mass-to-light ratio, or mass-luminosity ratio 
of luminous material: given the photometry (or surface 
photometry) of a galaxy, we can estimate its mass (or 
distribution of mass) using the mass-to-light ratio. The 
spectroscopic methods use the Doppler effect to study 
the dynamics of a galaxy. We then deduce the 
distribution of mass within the galaxy needed to 
produce these dynamics. 

Unfortunately, the two methods do not give consistent 
results, an example of the so-called dark-matter 
problem. Part of the reason for this is obvious: any 
method which depends on using mass-luminosity ratios 
to estimate mass will inevitable miss any non-luminous 
matter which may be present. Even within a given 
method, however, there are also discrepancies.  

                                                           
7This is an oversimplification but serves our purpose here.  
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4.2 Photometric Methods 
4.2.1 MASS-LUMINOSITY RATIOS FOR STARS 

As I said above, this method depends on knowing the 
mass-luminosity (M/L) ratio of galaxies. There is a 
danger of going round in a circle here: to know M/L for 
a particular galaxy, we need to know its luminosity and 
its mass!  We can, however, use observations within our 
own galaxy to get Galactic values of M/L and assume 
that we can extrapolate these values to other galaxies. 

One value of M/L we know very well is that of the 
sun8, 9: 

1-3
26

30

sun

sun  Wkg 10119.5
 W103.826
kg 10989.1

×=
×

×
=

L
M

. (2.44) 

It is very convenient in astronomy to use solar values as 
the standard units. Let us define the dimensionless 
quantity M as the ratio of the mass M of an object to that 
of the sun: 

 sun: MM=M . (2.45) 

Similarly, define the dimensionless luminosity L of an 
object of luminosity L as 

 sun: LL=L . (2.46) 

Then the mass-luminosity ratio of the object can be 
expressed in the dimensionless form M/L: 
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==
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M . (2.47) 

The value of M/L varies by many orders of magnitudes 
for main-sequence stars, as shown in Table 2-1. 

Table 2-2. Mass-luminosity ratios of stars. 

Spectral Type M/L 

O5 ~ 10-5 

A0 ~ 0.04 

K5 ~ 4.4 

M5 30 

How, then, do we predict the mass-luminosity ratio of a 
collection of stars of various classes such as we have in 
galaxies? 

                                                           
8Note that I am using the bolometric luminosity of the sun. We more 
usually measure the luminosity of an object in some restricted 
wavelength range such as the B band. I shall not usually make this 
distinction. 
9 The usual symbol for the sun is ~. Unfortunately, I do not seem able 
to force it into equations! 

4.2.1 STELLAR MASS-FUNCTION 

Let N(M) be the number of stars per unit volume with 
mass greater than M. The number φ(M)dM with masses 
in the range M to M + dM is then given by 

 ( ) ( ) dM
dM

MdNdMM −=φ . (2.48) 

In the solar neighbourhood, which is clearly not typical 
of all galaxian environments but which I shall use for 
illustration, we find that 
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where M
6 is some characteristic mass and φ

6
 is the value 

of φ(M) at M
6
. Because of the negative exponent in 

equation (2.49), the distribution is dominated by low-
mass stars. Indeed, the total number Ntotal of stars of 
masses between the lower mass-limit Mlow and the 
upper mass-limit Mhigh for stars is given by 
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where the last line follows because α > 1 and 
Mhigh >> Mlow. Equation (2.50) shows that the total 
number of stars is very sensitive to the uncertain lower-
mass limit Mlow, diverging as MIow tends to zero. 

The total mass Mtotal all the stars is also dominated by 
the low-mass stars because 
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since α >2. This again diverges as Mlow tends to zero.  

What about the total luminosity Ltotal? On average, the 
luminosity of a main sequence star is proportional to its 
mass to the power 3.3: 
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where L
6
 is the luminosity of a star of mass M

6
. Using 

the same approach as above, we get 
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since α < 4.3. It is clear that, in contrast to the total 
mass, the total luminosity is controlled by the (equally 
uncertain) upper mass-limit. Combining the results of 
equations (2.51) and (2.53), we see that the mass-
luminosity ratio in the solar neighbourhood depends on 
both the uncertain mass limits: 
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Best estimates give 
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As we shall see, this is much lower than the values 
given by dynamical methods. 

4.3 Spectroscopic Methods 
4.2.1 PHYSICAL BASIS 

All spectroscopic methods depend ultimately on 
measuring some characteristic velocity associated with 
some component of the galaxy and assuming that this 
velocity is determined by the galaxy’s gravitational 
field. Even without going into more detail than this, it is 
simple to deduce from dimensional arguments that the 
mass M of a galaxy in which the characteristic velocity 
v is observed must be given by 

 
G

RvM
2

β= , (2.56) 

where R is the characteristic size of the galaxy (or 
component), G the gravitational constant and β is a 
numerical constant. Of course, relation (2.56) will not 
give the value of β and it begs the question of what is 
meant by the characteristic size and velocity. 
Nonetheless, we shall see the general form of the 

relationship appearing in all estimates of mass, as 
indeed it must because it involves all the relevant 
quantities and is dimensionally correct. 

There are basically three methods: use of the virial 
theorem for elliptical galaxies and galaxies in clusters; 
(statistical) use of Kepler's equations for binary 
galaxies; and use of orbital dynamics for spiral galaxies. 

4.3.1 THE VIRIAL THEOREM 

For a bound self-gravitating system – that is one in 
which has negative total energy – the virial theorem 
states that the average, over an infinite time, of the sum 
of twice the kinetic energy T and the potential energy Ω 
is zero: 
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Unfortunately, we cannot wait an infinite time, or even 
for a time which is large compared to the time-scales on 
which things move around galaxies (typically 108 y). I 
shall show later, however, that the individual stars in 
galaxies (and to some extent galaxies in clusters) move 
more or less independently of other individual stars and 
only respond to the overall – essentially constant – 
gravitational field produced by the others. The total 
energy of an isolated system must remain constant and 
therefore, if the potential energy is effectively constant, 
the total kinetic energy must also be more or less 
independent of time. We can therefore approximate the 
ensemble averages of the kinetic and potential energies 
in equation (2.57) their actual values at the time of 
observation, giving 

 02 ≈Ω+T . (2.58) 

Let us use this to determe the masses of elliptical 
galaxies. 

4.3.2 MASSES OF ELLIPTICAL GALAXIES 

The first problem is to determine Ω.  Using dimensional 
arguments, we can deduce that 

 
R

GM 2
α−=Ω , (2.59) 

where M is the mass of the galaxy contained within 
some characteristic distance R and α is a dimensionless 
numerical constant which depends upon the distribution 
of mass within the galaxy. It can be shown that, for a 
uniform, spherically symmetric distribution, α = 3/5. 
The calculation of α is more difficult for non-spherical 
distributions and requires assumptions about the 
variation of the density, which has to be derived from 
the light distribution (see above). Moreover, as I have 
already pointed out, we do not know the true shape of 
elliptical galaxies. Fortunately a few trial cases of 
reasonable density distributions is enough to convince 
us that the value of α is always close to unity. 
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The next step is to estimate 2T, twice the kinetic energy 
of the stars. Obviously the kinetic energy of a star is a 
function of its velocity and this in turn can be measured 
using the Doppler shift of its spectral lines. If star i has 
mass mi and velocity vi, its kinetic energy Ti is given by 

 2

2
1

iii vmT =  (2.60) 

so that T, the total energy of the N stars in the galaxy, is 
given by 
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We can get an approximate expression for T by writing 
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 (2.62) 

where <> denotes an average over all the stars in the 
galaxy. Hence 

 22 vMT ≈ , (2.63) 

where M is the total mass of stars of the galaxy, because 
the average mass <m> of the stars is defined by 

 
N
Mm = . (2.64) 

Combining equations (2.57), (2.59) and (2.63), I get 
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Equation (2.65) has the same form as (2.56) which, of 
course, it must. 

Δλ

 
Figure 2-22. Schematic view of galaxian absorption line 

built up of the lines of individual stars. 

How can we estimate <v2>? The spectrum of each star 
in the galaxy will show the absorption lines of the star's 
atmosphere. Because the stars are moving with respect 
to each other, these absorption lines will be Doppler-
shifted one with another. Relative to the rest-frame of 
the galaxy, the shift δλi of a line in star i's spectrum is 
given by 

 
c

v i

i

i ,r=
λ

δλ
, (2.66) 

where vr,i is the line-of-sight velocity of the star and c is 
the velocity of light. As there are some 1011 stars in a 
large elliptical galaxy, it is not possible to measure the 
line-of-sight velocity of each star individually! Because 
there is a range of stellar velocities, however, there is a 
spread in the Doppler shifts of their individual lines. 
Most of the stars will be moving relatively slowly and 
therefore contribute a lot of absorption with nearly zero 
Doppler shift. Fewer stars will be moving fast and so 
there will be less absorption at higher shifts. The overall 
effect, shown schematically in Figure 2-22, is to 
broaden the absorption line from the galaxy as a whole.  

The overall width Δλ of the line is given by 

 
c

v i
i

2/12
,r2/12 λδλλ =≡Δ  (2.67) 

where, as before, <> denotes an average over all the 
stars in the galaxy. 

Because the Doppler effect only gives us the line-of-
sight velocity of the star, we need to make some 
assumption about the two components of velocity 
perpendicular to that line of sight10. I shall make the 
simplest assumption that the mean-squares of the 
components of the velocities in every direction are 
approximately the same11 so that 

 2
,2p

2
,1p

2
,r iii vvv ≈≈ , (2.68) 

where vp1,i and vp2,i are two orthogonal components of 
the star's velocity perpendicular to the line of sight. 
Then 
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From equations (2.65), (2.67) and(2.69), we get 
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I have gone through this rather lengthy argument in 
some detail for two reasons. First, it is fundamental to 
determining the masses, both of individual (elliptical) 
galaxies and of galaxies in clusters. Secondly, you 
should understand the assumptions and approximations 
involved and realise the uncertainty of all our estimates 

                                                           
10Proper motions could, in principle, give us this information but the 
proper motion of stars in other galaxies is far too small to be detected. 
11This is obviously unlikely to be true in galaxies with marked 
ellipticity; for a sample of galaxies, this can be corrected for 
statistically. 
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of mass. A last point is worth making. Like all methods 
of estimating mass, it delivers only the mass within 
some radius R, out to which the measurements have 
been made. There is no guarantee that there is not more 
mass outside this distance. 

The estimated masses of elliptical galaxies range from 
106 Msun for dwarfs to over 1012 Msun for giants. The 
lower end of the range overlaps with that of globular 
clusters of stars in out own galaxies. 

4.3.3 MASSES OF SPIRAL GALAXIES 

In assuming that the three components of velocity in 
elliptical galaxies were the equal, I rejected any 
possibility of large-scale systematic motion. For spiral 
galaxies, on the other hand, it is clear that material is in 
large-scale rotation about the centre of the galaxy. This 
was deduced long ago for our own Galaxy from 
observations of the motion of nearby stars relative to the 
sun; it has been confirmed by radio observations of 
material, such as neutral hydrogen (HI) atoms and 
molecules like CO, distributed throughout the Galaxy. 
In other galaxies the same techniques can be used: the 
line-of-sight velocity of stars or gas in the disc of the 
galaxy can deduced from the Doppler shift of lines and 
this line-of-sight velocity converted into a velocity of 
motion about the centre of the galaxy. In doing this, we 
assume that the disc material is essentially in circular 
orbit about the centre of the galaxy, an assumption I 
shall justify later. 

There are conflicting requirements on the orientation of 
galaxies suitable for measuring rotational velocities. In 
order to see clearly from what part of a galaxy a 
particular line originates, we should prefer the galaxy to 
be as face-on to us as possible. Unfortunately, the 
material in a face-on galaxy has essentially no line-of-
sight component of velocity and so there is no Doppler 
shift! The maximum shift is obtained principle from an 
edge-on galaxy but there are two problems with such an 
orientation. First, we have to look through the material 
of an edge-on disc. Many disc galaxies have dust lanes 
that will obscure starlight so that only radio lines from 
interstellar gas can be used. In any case, the line-of-
sight passes through material that is at a range of 
distances from the centre of the galaxy and is hence 
moving at a range of velocities, making interpretation 
difficult. We need to compromise, choosing galaxies 
which are sufficiently inclined to allow us to resolve 
where in the disc the lines are coming from whilst still 
giving appreciable components of velocity in the line of 
sight.  

Slit of spectroscope

Material in disc
approaching us

Material in disc
receding

Reference
laboratory line

Wavelength

λo

Blue shift

Red shift

 
Figure 2-23. Long-slit spectroscopy. 

Figure 2-23 shows schematically how long-slit spectra 
are used to measure a galaxy's rotation curve in the 
optical. The slit of the spectrograph is placed along the 
major axis of the galaxy as shown. The resultant 
spectrum of a single line of rest-wavelength λo is shown 
on the right, relative to the same line produced by a 
laboratory source. The parts of the galaxy which are 
approaching the observer give rise to blue shifted lines 
whilst those which are receding give rise to red-shifted 
lines. The overall effect is to produce the curved 
spectral line shown in (exaggeratedly) the figure12. 

Let Θ(r) (called the circular velocity) be the velocity of 
rotation – in circular orbit about the centre of a galaxy – 
of the material at distance r from the centre of the 
galaxy. Then, neglecting the inclination of the galaxy to 
the line of sight, for simplicity, we get for the 
wavelength shift Δλ as a function of r, 

 ( )
c
rΘ

=
Δ

oλ
λ  (2.71) 

A plot of the circular velocity against the distance from 
the centre of the galaxy is called a rotation curve. A 
schematic example is shown as the solid curve in Figure 
2-24. Note that, after an initial rise from the centre of 
the galaxy, the rotation curve is rather flat; this is typical 
of the majority of spirals. Indeed, the curves usually 
remain flat as far out as matter can be traced, using 
radio and millimetre techniques. 

                                                           
12For simplicity, I have assumed that the galaxy as a whole is at rest 
with respect to the Earth. In practice, the centre of the line would also 
be red-shifted with respect to the laboratory line because of the 
galaxy's recession. 
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Figure 2-24. Rotation curve of spiral galaxy. 

Given the rotation curve, we can attempt to construct a 
model of the distribution of mass that would give rise to 
that curve. The simplest assumption, which turns out to 
be rather good for the outer regions of galaxies, is that 
the material is distributed in a dark halo with spherical 
symmetry about the centre of the galaxy. This is 
surprising in view of the very obvious concentration of 
visible matter in the plane of the galaxy; I shall return to 
this point shortly. It is fortunate for us, though, because 
the gravitational field of a spherically symmetric 
distribution of matter is easy to calculate whereas that of 
a disc is much more difficult. 

We shall deal with circular motion in disc galaxies in 
more detail in Chapter III. I want only to consider some 
elementary results here. For a spherically symmetric 
distribution of matter, the motion at distance r from the 
centre depends only upon the mass M(r) contained 
within r. For the circular velocity Θ(r) of a star of mass 
m I can, therefore, write 

 ( ) ( )
2

2

r
mrGM

r
rm

=
Θ , (2.72) 

which just says that the centripetal acceleration is 
provided by the gravitational force. If essentially all the 
mass of the galaxy were concentrated at its centre, then 
we should have 

 ( ) ( ) constant0 == MrM , (2.73) 

in which case we should have from equation (2.72) that 
the rotation curve would be given by 

 ( ) ( ) 2/1
2/10 −

−

∝⎥⎦
⎤

⎢⎣
⎡=Θ r

r
GMr . (2.74) 

This is Keplerian rotation shown as the dashed curve in 
Figure 2-24. Obviously a model in which all the mass is 
concentrated at the centre does not adequately represent 
a real spiral galaxy. 

From equation (2.72), we can immediately obtain an 
expression for the mass M(r) contained within r: 

 ( ) ( )
G

rr
rM

2Θ
= , (2.75) 

Let us first look at the flat outer part of the rotation 
curve. If we put, as a first approximation to the rotation 
curve, 

 ( ) constanto =Θ≈Θ r , (2.76) 

we see immediately from equation (2.75) that 

 ( ) r
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G

2
o . (2.77) 

Observation of molecular gas has enabled the rotation 
curves of many galaxies to be measured out to several 
times the radius of the optically visible disc.  
Remarkably, only in a few cases do these curves show 
any sign of falling off from a constant Θo, as indicated 
in Figure 2-24. Thus, according to relation (2.77), the 
mass of the galaxy continues to grow as far as out we 
can trace it! Any estimate we make of the total mass of 
the galaxy can therefore only be a lower limit. A second 
problem is that the masses involved are much as an 
order of magnitude or more greater than that estimated 
by adding up the masses of the material which we can 
observe in stars and gas. This must be true, of course, if 
the mass is distributed with spherical symmetry because 
most of the observed material is in the disc. We have 
here another example of the “dark matter” problem. 

Given the way that M(r) depends upon r, we can work 
out what the density profile ρ(r) must be. For the mass 
dM(r) contained between r and r + dr we have 

 ( ) ( )rdrrrdM ρπ ×= 24  (2.78) 

so that 
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Let us assume that ρ(r) takes the power-law form 
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Then it is easy to show that M(r) is given by 
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Comparing equations (2.77) and (2.81), we see that, to 
agree with observation of the outer parts of the galaxy, 
we must have 

 2or          13 −==+ αα , (2.82) 
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so that the density falls of as the inverse square of the 
distance r from the centre of the galaxy. 

Estimates of the masses of spiral galaxies, within a 
hundred parsecs or so of their centres, range from about 
1010 Msun to about 1012 Msun. 

4.4 Mass-Luminosity Ratios for Galaxies 
Putting together the results of photometry and the 
estimates of galaxian masses, we estimate the mass-
luminosity ratio M/L for galaxies. We find: 
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h

h
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M  (2.83) 

You should compare these values of M/L with the value 
of about 2 given above for stars. Once again, we see the 
need for dark matter. One possibility is that the halo 
consists largely of brown dwarfs, “stars” with masses 
less than about 0.05 Msun. These objects are not massive 
enough for nuclear reactions to start up in their centres 
and they derive their faint luminosity from slow 
gravitational contraction. They are expected to be cool 
objects, radiating most of their power in the infrared, 
and have been discovered recently inter alia by ESA's 
Infrared Space Observatory (ISO) [e.g. 3]. Another 
possibility is that the matter is made up of white dwarf 
stars [4]. We shall see later, however, that not all dark 
matter in the universe can be in the form of normal 
baryonic material so the dark halos of galaxies may be 
dominated by exotic matter. 
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