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CHAPTER 3: DYNAMICS OF 
GALAXIES 

1. Introduction 
In this chapter, we shall explore the way that the 
material contents of galaxies move around and influence 
each other. In particular, I shall show that stars and gas 
behave very differently. I shall also discuss ideas about 
the origin of spiral structure in disc galaxies.  For a 
more detailed discussion, see [1]. 

2. Stellar Dynamics 
2.1 Independence of Stellar Motion 
The two main constituents of galaxies – the stars and the 
gas – behave very differently. This is one of the reasons 
why spiral galaxies are so different from ellipticals. We 
shall see in a moment that most stars in galaxies ignore 
the presence of other individual stars, responding only 
to their overall gravitational field1. The gas, on the other 
hand, behaves as an entity: individual clouds of gas 
behave as continuous fluids and the clouds interact 
violently with each other. We shall return to the 
behaviour of the gas later when considering the 
formation of stars and the existence of spiral structure. 
First, let us tackle the motions of stars. 

2.2 Stellar Collisions 
2.2.1 MEAN-FREE PATH AND COLLISION TIME 

 

vt

a

v

“Bullet” star
 

Figure 3-1. Volume swept out by circle of influence. 

Suppose there are n stars per unit volume of space, with 
average velocity v. Consider a “bullet” star, travelling at 
v through these “target” stars. Let us assume that the 
bullet star interacts with the targets if their centres lie 
with a circle of influence (which I shall discuss in more 
detail below) of the centre of the bullet, which has 
radius a. The cross-section σ for collisions is therefore 
given by 

 2aπσ =  (2.1) 

In time t, the circle of influence will sweep out a 
cylindrical volume V given by 

                                                           
1This applies only to so-called field stars and not to stars in clusters. 
Nor is it true of the centres of galaxies where the density of stars can 
be very high. 

 vtV ×= σ , (2.2) 

as shown in Figure 3-1. This cylinder contains N target 
stars, where 

 ( ) nvtnVN ×=×= σ  (2.3) 

and there will therefore be N collisions in the time t. The 
average time τc between individual collisions is 
therefore given by 

 ( ) vnnvt
t

N
t

σσ
τ 1

c ==≡ . (2.4) 

In this time, the bullet star travels its mean-free path λc 
given by 

 
n

v 1: cc σ
τλ == . (2.5) 

You should note that the mean-free path is independent 
of the velocity of the stars. Let us now investigate the 
frequency of different types of stellar collision. 

2.2.2 DIRECT PHYSICAL COLLISIONS 

a

R

 
Figure 3-2. Direct physical collision between two stars 

This is the most obvious and familiar type of collision: 
two stars physically collide with each other with severe 
consequences for their continued existence as 
individuals. If the average radius of the stars is R then, 
as shown in  

Figure 3-2, the radius of the sphere of influence is twice 
the radius of the stars: 

 Ra 2= . (2.6) 

The mean-free path λcoll for direct collisions between 
stars is therefore given by 

 
nR 2coll

4
1

π
λ =  (2.7) 

and the corresponding collision time τcoll by 

 
nvR2coll

4
1

π
τ = . (2.8) 
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Putting in numerical values, we get 

 ( )
( ) ( )3-2

sun

11

coll
pc

106.1~kpc
nRR

×λ ; (2.9) 

 ( )
( ) ( ) ( )1-3-2

sun

20

coll
s kmpc

105.1~y
vnRR

×τ  (2.10) 

What values do λcoll and τcoll have in normal 
circumstances? Let us take the solar neighbourhood as 
an example. The typical radii and masses of stars are 
those of the sun, Rsun and Msun respectively2. The density 
ρ of material – mostly stars – in the solar 
neighbourhood is of the order of 0.1 Msun pc-3 so that 
the number-density n of stars is given by 

 3-

sun
pc 1.0~~

M
n ρ . (2.11) 

Finally, typical velocities3 of stars in the solar 
neighbourhood are about 20 km s-1. Putting in these 
numbers together, we get 

 Mpc 10~ 9
collλ  (solar neighbourhood); (2.12) 

 y 10~ 20
collτ  (solar neighbourhood). (2.13) 

This value of λcoll is some million times the radius of the 
visible universe and τcoll is some ten billion times the 
age of the universe. Since the solar neighbourhood is 
fairly typical, we can say confidently that solid-body 
collisions between stars almost never happen throughout 
most of the Galaxy! Even in the centre of a globular 
where densities are of order 104 pc-3 and velocities of 
order 15 km s-1, 

 Mpc 100~collλ  (globular cluster); (2.14) 

 y  10~ 15
collτ  (globular cluster). (2.15) 

2.2.3 GRAVITATIONAL “COLLISIONS” 

Although stars may physically collide only very 
infrequently, they do of course interact gravitationally 
and this interaction affects their motion. I am going to 
make a "back-of-the-envelope" study of this 
gravitational interaction; I shall use this sort approach a 
lot in the course because it gives a quick insight to 
problems whilst usually giving an answer within about 
an order of magnitude of more detailed treatment.  

                                                           
2Note that, when I use solar quantities such as Rsun as variables, they 
are italicised. When used as units, as in 0.1 Msun, they are not. 
3I am speaking here of the random, or peculiar, motions of stars over 

and above their systematic orbital velocity of about 220 km s-1 about 
the Galactic centre. 

φ
v

b r

Star 1

Star 2  
Figure 3-3. Gravitational deflection. 

Figure 3-3 shows the gravitational interaction between 
two stars. Star 1 approaches star 2 at relative velocity v 
and with impact parameter b, defined as the closest 
approach the two stars would make to each other if they 
did not interact gravitationally. Suppose that star 1 is 
deflected through an angle φ (the angle between the 
asymptotes to its path). The precise calculation of φ is 
tedious but an estimate of its value can be obtained very 
simply. The gravitational force F between the two stars 
is given by 

 ( )
2

21

r
mGm

rF = , (2.16) 

where m1 and m2 are the masses of stars 1 and 2 
respectively, and r is their instantaneous separation. 
Rather than follow the interaction given by equation 
(2.16) over the infinite time for which it applies, I shall 
approximate it as follows. First, I shall use the fixed 
value F of the force between the two stars when they are 
separated by the impact parameter b. Secondly, I shall 
allow this force to operate only for a finite time. We 
then have 

 ( ) 2
21

b
mGm

bFF =≡ . (2.17) 

How long should we allow this force to act for? The two 
stars are separated by a distance comparable to b for a 
time τb of order: 

1star  ofVelocity 
  valuehas force  while1star by   travelledDistance F  

From Figure 3-3, we can see that 

 
v
b

b
2~τ . (2.18) 

From this, we can estimate the impulse I – equal to the 
force multiplied by the time during which it acts – given 
by star 2 to star 1: 

 
bv

mGm
v
b

b
mGm

FI b
21

2
21 22~~ =××τ . (2.19) 
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φ

v

Δv
 

Figure 3-4. Vector diagram of velocities. 

Suppose that, as a result of the interaction, star 1 suffers 
a change Δv in its velocity, perpendicular to its original 
velocity, as shown in the vector diagram of Figure 3-4. 
Since its change of momentum must equal the impulse 
given to it, we obtain 

 
bv

mGm
vm 21

1
2

~Δ  (2.20) 

or 

 
bv
Gm

v 22
~Δ . (2.21) 

Finally, using Figure 3-4, we can estimate the angle φ 
through which star 1 is deflected during the encounter. 
We find that 

 
2

22
~

bv
Gm

v
vΔ

≈φ . (2.22) 

To get an expression for b, let us note that a volume V 
of space contains N stars, where 

 nVN ×= , (2.23) 

n being the number-density of stars as before. An 
individual star therefor occupies, on average, a volume 
Vstar given by 

 
nN

VV 1
star ==  (2.24) 

so that the typical value of b – the separation between 
stars at their closest approach – is given by 

 3/11/3
star~ −= nVb . (2.25) 

From relations (2.22) and (2.25), we get 

 
2

2/1
22

~
v

nGm
φ . (2.26) 

Again using solar-neighbourhood values to estimate a 
typical value for φ, we find 

 arcsec 2radian 10~ 5 ≈−φ . (2.27) 

In other words, a typical gravitational interaction 
between stars produces only a tiny deviation of the stars 
from their original path4. 

2.2.4 STRONG GRAVITATIONAL INTERACTIONS5 

From relationship (2.22), we can see that only close 
encounters will cause significant angular deflection of 
stars. I shall define a strong gravitational interaction as 
one that deflects a star through one radian6; as we shall 
see shortly, this is not quite a arbitrary as it may seem. 
From (2.22), we see that the impact parameter bstrong 
needed for this is given by 

 
2strong

2~
v
Gmb , (2.28) 

where I have dropped the suffix 2 on m as being  no 
longer necessary. Substituting bstrong for the radius of the 
sphere of influence in equation (2.1), we get from 
equation (2.5) for the mean-free path λrelaxl

7 between 
strong interactions, 

 
nmG

v
nb 22

4

2
strong

relax 4
1

ππ
λ == , (2.29) 

with corresponding collision time τrelax given by 

 
nmG

v
22

3
grav

relax
4v π

λ
τ == . (2.30) 

Putting in numerical values, we get 

 ( ) ( )
( )3

2

sun

-14

relax
s km3.4kpc

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

pcn
M

m

vλ ; (2.31) 

 ( ) ( )
( )3

2

sun

-13
9

relax
s km102.4y

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

pcn
M

m

vτ . (2.32) 

Now one radian, which is about 60° is a very 
appreciable deviation of a star from its original path. 
Therefore, τrelax is a measure of the time needed by a 
group of stars to influence each other significantly and 
hence to come into dynamical equilibrium with each 
other. It is known as the gravitational relaxation time. 

                                                           
4This conclusion does not hold for very dense regions, such as the 
centres of globular clusters or the centres of galaxies, where the 
densities and their random velocities are high. 
5I deliberately adopt a very simple approach here. A more detailed 
treatment gives somewhat lower values of relaxation times but the 
overall conclusions still hold. 
6 An alternative, and more realistic, approach is to calculate the 
number of collisions necessary to produce a total deviation of one 
radian. This is a random walk problem and gives a similar result. 
7 The reason for the choice of the suffix “relax” will be clear shortly. 
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Although the choice of one radian as the criterion for a 
significant deflection may appear rather arbitrary, there 
is another reason for choosing this value. It is easy to 
show that the impact parameter bstrong is that which 
makes the gravitational potential energy of a star – in 
the field of another – equal to its kinetic energy. Under 
such condition, we should expect the gravitational 
interaction to have a significant effect on the motion of 
the star. 

Using solar-neighbourhood value once again, we find 
that 

 Mpc 000,7~relaxλ  (solar neighbourhood); (2.33) 

 y  103~ 14
relax ×τ  (solar neighbourhood). (2.34) 

so that gravitational collisions again have very little 
effect. For the centres of globular clusters. however, 

 kpc20~relaxλ  (globular cluster); (2.35) 

 y105.1~ 9
relax ×τ  (globular cluster) (2.36) 

so that these have had time to become gravitationally 
relaxed, as we might expect from their smooth, 
spherical appearance. Note, though, that the mean-free 
path is much bigger than the size of the cluster so that 
stars have to cross the cluster many times for the 
relaxation to take place. 

We can conclude that, except in particularly dense 
regions such as the centres of globular clusters and the 
nuclear regions of spiral galaxies, stars move more or 
less independently of other individual stars. This fact is 
important in tracing the evolution of galaxies, as I shall 
show later. 

3. Gas Dynamics  
3.1 Simple Treatment 
3.1.1 COLLECTIVE MOTION 

As I said above, gas exerts pressure, which can be 
transmitted – at the speed of sound – over large 
distances within a cloud of gas. It also exhibits 
viscosity. Both these properties complicate the study of 
the (hydro-)dynamics of gas in galaxies and I shall not 
attempt more than an outline of most of the effects. I 
shall first give a very simple treatment of the collapse of 
a gas cloud before going into more detail in section 3.2. 

3.1.2 THE FREE-FALL TIME 

Consider a system, of mass M, in which the only forces 
acting are gravitational: there are no pressure forces in 
this idealised system. For simplicity I shall take the 
system to be spherically symmetric and initially at rest, 
as shown in Figure 3-5. The equation of motion of a 
particle of mass m, situated at distance r from the centre 
of the system, is 

r

M(r)

m

 
Figure 3-5. Free-fall of gas cloud. 

 ( ) m
r

rGM
dt

rdm 22

2
−= , (3.1) 

where, as usual, M(r) is the mass interior to radius r. It 
is easy to show that, as they accelerate inwards, no 
particle overtakes a particle initially closer to the centre 
of the system. For any chosen particle initially at ro, 
therefore, M(r) has the constant value M(ro). Let τff be 
the time for the chosen particle to reach the centre of the 
system, remembering that I am not allowing any 
pressure gradients to build up to stop the motion. τff is 
called the free-fall time. A back-of-the-envelope 
approach allows us to estimate τff as follows. For the 
particle to reach the centre, it has to travel a distance ro. 
Since the time it takes to do this is τff, a crude estimate 
of its average velocity <v> is given by 

 
ff

o~
τ
r

v − . (3.2) 

An equally crude estimate of its average acceleration 
<a> is given by 

 2
ff

o

ff
2

2
~~

ττ
rv

dt
rda −≡ . (3.3) 

The negative signs occur in relationships (3.2) and (3.3) 
because the motion is in the direction of decreasing r. 
Finally, a crude average value <F> of the gravitational 
force on the particle is given by 

 
( ) ( )

( )
( )
2

o

o
2

o

o
2

o 4
2

~
r

mrGM
r

rGM
r

rGM
F =≡ . (3.4) 

From relationships (3.1), (3.3) and (3.4), we get the 
approximate relationship 

 
( )
2

o

o
2
ff

o 4~
r

rGMr
τ

 (3.5) 

or 
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( ) 2/1

3
o

o
ff

4
~

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

r
rGM

τ . (3.6) 

We can re-write equation (3.6) as 

 
( ) ( )

( )

2/1

3
o

o
ff

34
316

~
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

r
rGM

π
π

τ . (3.7) 

But (4π/3)ro
3 is the volume of the sphere of radius ro so 

that 

 
( )

( )
ρ

π
~

34 3
o

o

r
rM

. (3.8) 

where ρ is a measure of the average density of the 
system. Hence 

 ( ) ( ) 2/12/1
ff ~

3
2~ −− ρρπτ GG . (3.9) 

since we are only considering orders of magnitude, and 
are not concerned with small numerical factors. 

Notice that the free-fall time is independent of both the 
size and the total mass of the system. Although derived 
for the special case of a spherical cloud, this expression 
gives the order of magnitude of the time taken by any 
self-gravitating system to collapse if no other forces act 
upon it.  

3.1.3 THE JEANS CRITERION 

 ρ

l

 
Figure 3-6. Jeans Collapse 

In a real cloud of gas, we shall to have pressure 
gradients8 that may help to support the cloud against 
gravitational collapse. Consider the cloud shown in 
Figure 3-6. If no pressure gradient existed within it, the 
cloud would start to collapse on a time-scale given by 
relationship (3.9). If the cloud wants to stop itself 
collapsing, it must set up a pressure gradient before it is 
too late. Now changes in pressure travel at the speed of 
sound so, to distribute this pressure-gradient correctly, 

                                                           
8It is important to remember that it is the pressure gradient that 
transmits a net force between neighbouring parts of a fluid. A uniform 
pressure exerts the same force on both “sides” of any element of the 
fluid and therefore exerts no net force. 

the cloud will need at least as long as the time τsound that 
it takes for a sound-wave to cross the cloud. This is 
given by 

 
sound

sound ~
v

lτ , (3.10) 

 l  being the characteristic size of the cloud and vsound 
being the speed of sound in the gas9. The cloud will 
collapse if it free-falls faster than it can set up the 
pressure gradient, that is if 

 soundff ττ < . (3.11) 

Using relationships (3.9) and (3.10), we see that the 
cloud will collapse if  

 
2/12

sound
J G

:~ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=>

ρ
v

ll  (3.12) 

The quantity Jl  defined by relation (3.12) is called the 
Jeans length after Sir James Jeans, who first advanced 
this idea. 

Corresponding to the Jeans length is the Jeans mass MJ 
which is the mass of the material contained within a 
region the size of the Jeans length. Clearly this mass is 
of the order of the density ρ of the material multiplied 
by 3

Jl : 

 2/1
2/32

sound3
JJ G

: −
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== ρρ

v
M l  (3.13) 

and the cloud will collapse if 

 J~ MM > . (3.14) 

Note that, the denser the cloud, the smaller the mass 
required to cause collapse. 

3.2 Hydrodynamics of the Gas 
3.2.1 THE EQUATION OF CONTINUITY 

I shall not discuss the theory of hydrodynamics in any 
detail but merely want to give the fundamental 
principles involved. There are four basic equations 
which convey these principles. The first, the equation of 
continuity, expresses the commonplace that matter 
cannot be created or destroyed. Consider a fluid in 
which a flow is taking place and select the volume V 
shown in Figure 3-7. Any increase in the mass M of 
material contained within the volume V must be 
provided by material flowing across the boundary S of 
the volume. Hence, we can write 

                                                           
9 I shall consider more precisely what is meant by the “speed of 
sound” later. 
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SacrossmassofflowofRate
VwithinmassofincreaseofRate

=
 (3.15) 

V

dS

u

θ
uδt

S

 
Figure 3-7, Flow of liquid. 

It is easy to write down an expression for the left-hand 
side of this equation. We have 

 dV
t

dV
dt
d

dt
dM

VV
⎮⌡
⌠

∂
∂

== ∫
ρρ ,  (3.16) 

where we can change the order of differentiation and 
integration because the volume V is fixed. 

Obtaining an expression for the right hand side of the 
equation (3.15) is a little trickier. Consider the 
infinitesimal element dS of the bounding surface, shown 
in the diagram, and suppose the velocity of the fluid at 
this point is u, in the direction shown. In time δ t, the 
volume of fluid flowing out of the volume is simply the 
volume δV of the slanted cylinder shown. It is clear 
from the figure that 

 ( )u.dSdSu ttV δθδδ =×= cos . (3.17) 

If the density of the fluid is ρ at this point, then the total 
mass δ M of material flowing into the volume in time δ t 
is given by 

 ∫−=−=
S

tVM u.dSρδδρδ  (3.18) 

so that 

 ∫−=
S

dt
dM u.dSρ  (3.19) 

Equating the expressions (3.16) and (3.19) for dM/dt, 
we get 

 ( )dVdV
t

S VV

u.u.dS ρρρ
∫ ∫∇−=−=⎮⌡

⌠
∂
∂ , (3.20) 

where I have used Gauss’ theorem to get the second 
equality. We can re-write (3.20) as 

 ( ) 0=⎮
⌡

⌠
⎥
⎦

⎤
⎢
⎣

⎡
∇−

∂
∂ dV

t
V

u. ρρ , (3.21) 

or, since the we chose the volume V quite arbitratrarily, 

 ( ) 0=∇−
∂
∂ u. ρρ

t
. (3.22) 

which is the equation of continuity10. 

3.2.2 THE EULER EQUATION 

The Euler equation is common-sense application of 
Newton’s second law although I first need to discuss the 
concept of the hydrodynamic derivative. Consider any 
function f of the four variables (x,y,z,t): f might be 
density or pressure, for example. In general, taking the 
differential of f, we have 

 i
i i

dx
x
fdt

t
fdf ∑

= ∂
∂

+
∂
∂

=
3

1
 (3.23) 

where xi = x, etc. Now fix my attention on the rate of 
change of the function f which we would measure, in 
some given element of the fluid, while moving with that 
element; denote this rate of change of f by Df/Dt. 
Dividing equation 2.14 by δ t throughout, we obtain 

 
,

D
D

3

1

3

1

i
i i

i

i i

u
x
f

t
f

dt
dx

x
f

t
f

t
f

∑

∑

=

=

∂
∂

+
∂
∂

=

∂
∂

+
∂
∂

=

 (3.24) 

where ui is the ith component of the velocity of the 
fluid. The second equality in equation (3.24) follows 
from the fact that we are moving with the fluid so that 
the rate of change dxi /dt of our xi-co-ordinate is ui. The 
quantity denoted by D/Dt is called the hydrodynamic 
derivative. 

Equation  (3.24) can be written in compact form as 

 ( ) f
t
f

t
f

∇+
∂
∂

= u.
D
D . (3.25) 

We now use equation (3.25) to find the acceleration 
Du/Dt of the fluid. Newton's second law says that  force 
is equal to mass times acceleration. Consider a small 
mass m of the fluid. Then 

 fu
=

t
m

d
D , (3.26) 

where f is the force acting on the mass m. If we define F 
to be the force per unit mass of fluid, so that 

                                                           
10Equation 2.13 is, of course, similar to the equation of conservation of 
charge in electromagnetism, the “mass current-density” ρ u replacing 
the electrical current-density j. 
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m
fF = , (3.27) 

then equation (3.26) becomes 

 Fu
=

td
D . (3.28) 

There are two11 forces acting, the gravitational force and 
the pressure-gradient force. By definition of the 
gravitational potential Φ, the gravitational force fG 
acting on mass m of the fluid is given by 

 Φ∇−= mGf  (3.29) 

so that the gravitational force FG per unit mass is given 
by 

 Φ−∇== Gm
fF 1

G . (3.30) 

By considering the pressure forces acting on opposite 
sides of a small cube of fluid, it is easy to show that the 
force Fp per unit mass of the fluid, arising from a 
pressure gradient ∇p, is given by 

 p∇−=
ρ
1

pF . (3.31) 

Finally, from equations (3.28), (3.30) and (3.31), we get 
the Euler equation for the velocity u of the fluid: 

 p
t

∇−Φ−∇=
ρ
1

D
Du . (3.32) 

3.2.3 THE POISSON EQUATION 

The third equation we need is the Poisson equation for 
the gravitational potential Φ: 

 ρπG42 =Φ∇ , (3.33) 

which is easily obtained by analogy with the 
electrostatic potential and charge-density in 
electromagnetism.. 

3.2.4 THE EQUATION OF STATE 

So far, we have three equations relating the four 
variables u, ρ, p and Φ. We need one more equation in 
order to get a solution for any one of the variables; this 
is the equation of state relating p and ρ: 

 ( )ρpp ≡ . (3.34) 

                                                           
11For simplicity, I shall ignore electromagnetic forces although, in 
practice, these undoubtedly play an important rôle. 

In fact, if we assume that all motion is adiabatic, it turns 
out that all we need is the differential relation12 

 2up

S

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂
ρ

. (3.35) 

Then,  

 ρρ
ρ

∇=∇=∇ 2u
d
dpp . (3.36) 

We shall see later that u is related to the velocity of 
sound in the gas. Using (3.36), we can eliminate p from 
the Euler equation and find 

 ρ
ρ

∇−Φ−∇=
2

D
D u

t
u  (3.37) 

We are now poised to explore the behaviour of the gas 
in galaxies! 

3.2.5 PERTURBATIONS AND LINEARISATION OF THE 
EQUATIONS 

We now have three (differential) equations for the three 
unknowns ρ, u and Φ. Given appropriate boundary 
conditions we could, in principle, solve them. In 
practice the solution is difficult because the equations 
are non-linear. If we are content to explore small 
perturbations from the equilibrium state, it is possible to 
obtain approximate equations which are linear and 
which can therefore be solved more easily. Moreover, if 
we have any two solutions of a linear equation, the sum 
of these solutions is also a solution. This allows us to 
use Fourier techniques in seeking solutions. Using this 
perturbation approach, the Jeans criterion of section 
3.1.3 can be derived in a more rigorous fashion. The 
main reason for introducing the equations, though, is 
that they form the foundation for the theory of spiral 
structure, which I shall describe later. 

Consider the density ρ of the fluid as an example. 
Suppose it can be represented by a known part ρ 0 
together with a perturbation ρ 1, which is a small 
fraction of ρ 0:  

 10 ρρρ += . (3.38) 

Doing the same for the pressure p, the velocity u and the 
gravitational potential Φ, we arrive at the equations 

 
.

;
;

10

10

10

Φ+Φ=Φ
+=
+=

uuu
ppp

 (3.39) 

We assume that the quantities q0 themselves solutions of 
the basic equations (3.22), (3.32) and (3.33). If we 

                                                           
12 Do not confuse this scalar quantitiy u with the vector velocity u of 
the fluid. 
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substitute for ρ and u, from equations (3.38) and (3.39), 
in the equation of continuity  (3.22), we get 

 ( ) ( )( )[ ] 0. 101010 =++∇++
∂
∂ uuρρρρ
t

. (3.40) 

Because the quantities q1 are small compared with the 
q0, we can neglect second order terms in the q1s and so 
reduce equation (3.40) to the form 

 
( )

( ) 0.

.

0110
1

00
0

=⎥
⎦

⎤
⎢
⎣

⎡
+∇+

∂
∂

+

⎥
⎦

⎤
⎢
⎣

⎡
∇+

∂
∂

uu

u

ρρ
ρ

ρ
ρ

t

t
. (3.41) 

The first term in square brackets in equation (3.41)
vanishes identically because ρ 0 and u0 are chosen to 
satisfy the equation of continuity (3.22). We are 
therefore left with 

 ( ) 0. 0110
1 =+∇+

∂
∂

uu ρρ
ρ
t

, (3.42) 

which is linear in the perturbations ρ1 and u1. 

We can linearise the Euler equation (3.32) in a similar 
way to get 

 1
0

2

1
1 ρ

ρ
∇−Φ−∇=

∂
∂ u

t
u

. (3.43) 

The Poisson equation (3.33), which is already linear, 
reduces to 

 11
2 4 ρπG=Φ∇ , (3.44) 

3.2.6 THE DISPERSION RELATION 

I now want to show that the above equations can have 
wave-like solutions; I shall show this only for ρ1 but the 
result also holds for p1, u1 and Φ1. Suppose that the 
background quantities ρ 0, p0, and Φ0 are homogenous 
and that the background fluid is at rest. Then 

 

constant.
0;
constant;
constant;

0

0

0

0

=Φ
=
=
=

u
p
ρ

 

Under these conditions, equation (3.42) reduces to 

 0. 10
1 =∇+

∂
∂

uρ
ρ
t

. (3.45) 

Taking the derivative of this equation with respect to 
time, we get 

 ( ) 0. 102
1

2
=∇

∂
∂

+
∂

∂
u

tt
ρ

ρ
. (3.46) 

Take the divergence of the Euler equation (3.43) to get 

 1
2

0

2

1
21. ρ

ρ
∇−Φ−∇=

∂
∂

∇
u

t
u

, (3.47) 

or 

 1
2

0

2

11 4. ρ
ρ

ρπ ∇−−=∇
∂
∂ uG
t

u , (3.48) 

where I have interchanged the order of differentiation in 
the first equality and used the Poisson equation (3.44). 
If we now multiply equation (3.48) by ρ 0 and subtract it 
from equation (3.46), we get 

 ( ) 1o2
1

2
2

2
1

2
4 ρρπ

ρρ
G

x
u

t
+

∂

∂
=

∂

∂
. (3.49) 

If the second term on the right hand side of this equation 
were absent, we should have an ordinary wave equation 
for the perturbation ρ1 showing it to propagate with the 
speed of sound u.  

Any wave can be decomposed into its Fourier 
components, so let us try a plane-wave solution of the 
form 

 ( ) ( )kxtiextixt −=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −= ωρ

λ
νπρρ 1o1o1 2exp,  (3.50) 

where the angular frequency ω and the wave-number k 
are given by 

 πνω 2= ; (3.51) 

 
λ
π2

=k . (3.52) 

Substituting this solution into equation (3.49), we get 
the dispersion relation 

 o
222 4 ρπω Gku −= . (3.53) 

If the second term on the right hand side of equation 
(3.53) were absent – if we could “switch off” gravity – 
we should have the usual terrestrial dispersion relation 
between the frequency and wavelength of a wave: 

 222 ku=ω . (3.54) 

The term 4πGρ 0 modifies the equation in a profound 
way, however. Neither the phase nor the group velocity 
is any longer independent of the frequency of the wave: 
we find that 

2
2
o

22
o

phase 1
4

1 λ
π

ρρπω
u

G
u

ku
G

u
k

u −=−=≡  (3.55) 
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whereas 

2
2
o

22
o

group

1
4

1 λ
π

ρρπ
ω

u
G
u

ku
G

u
dk
du

−

=

−

=≡ . (3.56) 

Information therefore travels faster at longer 
wavelengths. 

The real importance of the gravitational term, though, is 
that, if it is sufficiently large, it can make ω 2 negative; 
that is, it can make the frequency imaginary! For 

 ,4 22
o kuG >ρπ  (3.57) 

we have 

 02 <ω . (3.58) 

Put 

 αω i±= , (3.59) 

where α is real. The solution of the wave equation then 
becomes 

 ikxt ee −= αρρ m
o11 . (3.60) 

This is no longer a travelling wave but a standing-wave 
disturbance which is unstable: its amplitude either 
grows or decays exponentially with time13, depending 
on the sign of α.  

3.2.7 JEANS CONDENSATION REVISITED 

 ρ

λ/2

l

 

Figure 3-8. Maximum wavelength in a cloud. 

Equation (3.57) shows that ω is imaginary, and 
therefore that exponential growth of the perturbation 
can occur, if14 

                                                           
13The derivation of the wave equation required that the disturbance 
was small. You will realise that, if the exponential growth occurs, the 
perturbation will not remain small and the above treatment will cease 
be valid after a time of the order of 1/α. 
14 It is no longer necessary to distinguish between the background 
density ρo and the perturbation ρ1 so we shall now drop the suffix 
zero. 

 
2/1

2J
4: ⎟

⎠
⎞

⎜
⎝
⎛=<

u
Gkk ρπ  (3.61) 

or 

 
2/12

J : ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=>

ρ
πλλ
G
u . (3.62) 

Consider the possible modes of oscillation of the cloud 
of gas, with characteristic dimension l , shown in 
Figure 3-8.  Since the empty space outside the cloud 
cannot support any density fluctuations15, the edges of 
the cloud must be nodes of the wave. The lowest-
frequency mode is therefore such that one half-
wavelength just spans the cloud so that the wavelength 
λ of this lowest mode of oscillation is given by 

 l~
2
λ . (3.63) 

We see from equation (3.62), therefore, that the density 
of the cloud can grow exponentially, that is the cloud 
can collapse exponentially, if 

 
2/12

J
J 42 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
==>

ρ
πλ
G
u

ll . (3.64) 

The mass M contained within a cloud of diameter l  is 
given by 

 ρπ 3

23
4~ ⎟

⎠
⎞

⎜
⎝
⎛ lM  (3.65) 

so the cloud can collapse if its mass satisfies the relation 

 1/2-
22/5

J 48
: ρπ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=>

G
uMM . (3.66) 

The Jeans length Jl defined by equation (3.64) differs 
form that obtained by the less sophisticated method of 
section 3.1.3 [equation (3.12)] by only a factor of 
π1/2/2=0.89 whilst the Jeans mass MJ differs from the 
previous estimate [equation (3.13)] by π5/2/48=0.36. 
3.2.8 THE TIME-SCALE OF COLLAPSE 

Equation (3.9) shows that a cloud whose mass exceeds 
the Jeans mass collapses – at least initially – as exp(-αt). 
It therefore increases its density by a factor e in a time 
τcollapse given by 

 
α

τ 1
collapse = . (3.67) 

                                                           
15 There is, of course, no such thing as completely empty space but the 
approximation is useful here. 
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Now the dispersion relation (3.53), with ω replaced by 
iα, shows that 

 

.42

44

4

o

2
2

o

2
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o
222

ρππ

ρπ
λ
π

ρπα

Gu

Gu
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⎜
⎝
⎛−≈
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⎞

⎜
⎝
⎛−=

+−=

l

 (3.68) 

where I have used relations (3.63). As the cloud 
collapses, the first term on the right hand side of 
equation (3.68) varies inversely as the square of the size 
of the cloud, whereas the density in the second term 
varies inversely as the cube of the size of the cloud. As 
the cloud shrinks, therefore, the second term eventually 
dominates the right hand side of the equation and we 
have 

 ρπα G4≈ . (3.69) 

From relation (3.67) we have, therefore, 

 ( ) ff
2/1

collapse
4
14~ τ
π

ρπτ =−G , (3.70) 

the last relation coming from equation (3.15). In other 
words, the cloud collapses on a time-scale comparable 
with the free-fall time. We can see what this means 
physically by remembering the discussion of section 
3.1.3: if the pressure gradient is insufficient to prevent 
it, collapse takes place and the pressure gradient 
becomes increasingly ineffectual against the effects of 
gravity. 

3.2.9 SHOCK WAVES16 

Let us now temporarily ignore gravitational effects. The 
derivation of equation (3.49) for the propagation of 
density perturbations in a gas depended on these 
perturbations being small. I now want to consider what 
happens if we consider large disturbances. We need first 
to consider how the speed of sound, given by equation 
(3.35), depends upon the density ρ of the gas. For a 
perfect gas – which is a good approximation to 
interstellar gas – undergoing adiabatic compression or 
rarefaction, the relationship between the pressure p and 
the density ρ is 

 
γ

ρ
ρ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

o
opp ,  (3.71) 

where po and ρo are constants and γ is the ratio of the 
specific heat at constant pressure to that at constant 
volume. Hence 

                                                           
16 This material will not be examined in detail. 
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du  (3.72) 

Since γ is greater than unity, the adiabatic sound speed 
increases as the density increases 

ρ

Time t=0

x

Time t>0

ρ3

ρ2

ρ1
ρ0

ρ

ρ4

ρ3

ρ2
ρ1
ρ0

ρ

ρ4

u0t
u1t

u2tu4t u3t

Time t>>0

x

x  
Figure 3-9. Development of a shock front. 

Consider the density perturbation shown by the full line 
in the top diagram of Figure 3-9 propagating into a gas 
of undisturbed density ρ 0. Let us approximate this 
disturbance by the sum of the small rectangular 
disturbances shown as dashed curves in the figure. After 
time t, the lowest rectangular disturbance will have 
travelled a distance u0t, where 

 ( )00 ρuu =  (3.73) 

is the velocity of sound in the undisturbed gas. The 
second small disturbance, however, will be travelling in 
the gas which has already been disturbed by the first 
disturbance and whose density has risen to ρ1. The 
second disturbance will therefore travel at the higher 
speed u1 and its leading edge will tend to catch up with 
the leading edge of the first disturbance, as shown in the 
middle diagram. The same applies to succeeding 
disturbances so that the front of the overall disturbance 
will steepen as shown. Obviously, the succeeding small 
disturbances can never actually overtake one another: 
the density cannot be multi-valued at any point! After 
sufficient time, therefore, the overall disturbance will 
become the shock front, shown in the lower diagram, 
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which will be travelling faster than the speed of sound 
in the undisturbed gas. 

Let us investigate the relationships between the 
conditions in the material behind a shock front and 
those in the un-shocked material. It is most convenient 
to work in a frame of reference in which the shock front 
itself is at rest, as shown in Figure 3-10. 

(pi ,ρi )

Vi =VsVf

(pf ,ρf )

 
Figure 3-10. Frame of shock front. 

In this case, the material upstream of the shock – the un-
shocked material – has pressure pi and density ρi and is 
flowing into the shock front with velocity Vs, the 
velocity of the shock front in the gas. Downstream of 
the front, the material, with pressure pf and density ρf,  
is flowing away from the front with velocity Vf. To 
relate the upstream and downstream quantities, we need 
to remember that mass, momentum and energy must be 
conserved as the material crosses the front. 

Consider the material flowing across the front within a 
cylinder of cross-sectional area A, as shown in Figure 
3-11. In time t, a volume Avs t of material will flow into 
the front and a volume AVS t will flow out of it. 
Conservation of mass then tells us that 

 tAVtAV ffSi ×=× ρρ  (3.74) 

or 

 ffSi VV ρρ = . (3.75) 

The momentum flowing into the front in time t is 
(ρi AVS t)VS whilst that flowing out is (ρf AVf t)Vf... The 
change in momentum must be caused by the impulse 
provided by the difference in pressure across the front. 
We have, therefore, 

 ( )AtppAtVAtV fi
2

ii
2

ff −=− ρρ  (3.76) 

or 

 2
fff

2
Sii VpVp ρρ +=+ . (3.77) 

Shock front

VS Vf

pi, ρi pf, ρf

A

 
Figure 3-11. Material crossing shock front. 

Finally, the energy flowing into the front is the sum of 
the internal energy uiAt, where ui is un-shocked internal 
energy density, the and the kinetic energy (ρiAt)VS2/2. 
In addition, the pressure does work piAt pushing the gas 
into the front. Similarly, the gas emerging from the front 
carries internal and kinetic energy away and does work 
on the surrounding gas. The conservation of energy 
therefore requires that17 
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or, using equation (3.75), 
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The solution of the three simultaneous equations (3.75), 
(3.77) and (3.79) is straightforward but tedious. The 
result is 
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 (3.80) 

This is known as the Hugoniot. For a perfect gas at 
temperature T, we have 

 ,;
H

V kT
m

pTcu
μ

ρ
==  (3.81) 

where cV is the specific heat at constant volume, μ is the 
mean molecular weight of the gas and mH is the mass of 
the hydrogen atom. 

But 

                                                           
17I am not considering situations in which energy is input to the gas 
from other sources such as by photons in an ionisation front. 
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m

cc =+= γ
μ

ρ , (3.82) 

where cp is the specific heat at constant pressure. From 
equations (3.81) and (3.82), we have 

 ppu
1−

=+
γ

γ  (3.83) 

so that equation (3.80) can be written in the form 
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If the downstream pressure is very much greater than 
the upstream pressure, it is called a strong shock, in 
which case. 
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. (3.85) 

The diffuse interstellar medium is mainly monatomic, 
with γ = 5/3, before and after the shock. In these 
regions, therefore, the density downstream is four times 
the upstream density in a strong shock. At the other 
extreme, a strong shock in a dense molecular cloud, 
with γI = 7/3, leaves material dissociated, with γf = 5/3. 
In this case, the density jumps by a factor of five. 

Concentrating on the latter case, we see from equation 
(3.75), it is clear that the gas leaves the shock front at 
one fifth of the shock velocity.  From equations (3.81)
and (3.84), we have for the ratio of the downstream 
temperature Tf of the gas to the upstream temperature Ti, 
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. (3.86) 

Equation (3.86) shows that the temperature of the gas 
increases in direct proportion to the jump in pressure. 
There is a simple physical explanation for this: the bulk 
kinetic energy upstream of the shock is converted into 
disordered internal energy at the shock, raising the 
temperature of the gas. 

Finally, from equations (3.75), (3.77) and (3.84), it can 
be shown that the shock velocity VS is related to the 
initial density and the final pressure in a strong shock by 
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We shall see that shocks play an important rôle in the 
behaviour of interstellar gas. 

4. Dynamics of Spiral Discs 
4.1 Overall Description 
We saw in chapter 2 that spiral galaxies consist of 
several components, the halo, the nucleus and the disc. 

We have also seen that the nucleus is similar to 
spheroidal galaxies. I shall here concentrate upon the 
disc component; in particular I want to discuss the spiral 
structure, which is such a striking feature of the discs of 
these galaxies.  

When we looked at the masses of spiral galaxies in 
chapter 2, we found that the disc material in spirals 
undergoes roughly plane-circular motion about the 
centre of the galaxy. This is only an approximation, 
though. If we take truly circular motion in a plane as the 
zeroth-order approximation, then we must add higher 
order motions to get an accurate picture. In practice, we 
shall consider only a first-order approximation as 
follows. First, we shall assume that deviations of the 
disc material from circular motion are very small. 
Secondly, we shall assume that the motion 
perpendicular to the plane is completely “decoupled” 
from that in the plane. By this I mean that, when 
analysing the motion perpendicular to the plane, we can 
completely forget about the motion in the plane, and 
vice versa. 

Why can we do this? First, as we saw in section 2, the 
motion of stars is essentially governed by the overall 
gravitational field of the galaxy and not by the fields of 
individual stars. Secondly, the motion of the material at 
any point is determined by the gravitational field at that 
point. If motion perpendicular to the plane does not take 
the star into regions where the gravitational forces 
parallel to the plane are significantly different from 
those acting in the plane, then the perpendicular motion 
will not significantly affect the motion in the plane. And 
vice versa; if the motion in the plane does not change 
the gravitational forces acting perpendicular to the 
plane, then this perpendicular motion will be unaffected 
of the motion in the plane. Because the motions are 
relatively small, it turns out that both assumptions are 
good and this makes the problem much easier. I shall 
deal with the plane and perpendicular motions in turn. 

4.2 Co-ordinate System 
 

Plane of Galaxy

Star

Z

z

θ
r

Θ
R

 
Figure 3-12. Co-ordinate system. 

Because the disc component of the galaxy exhibits 
cylindrical symmetry to a zeroth-order approximation, it 
is sensible to use cylindrical polar co-ordinates to 
describe it, as shown in Figure 3-12. Relative to the 
centre of the galaxy, we shall use the co-ordinates (r,θ) 
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in the plane and the co-ordinate z perpendicular to the 
plane18. We will denote by the capitals (R,Θ,Z) the 
linear velocities corresponding to motion in the (r,θ,z) 
directions respectively. The symbol Ω will be used to 
denote the angular velocity dθ/dt. 

4.3 Motion Perpendicular to the Plane of the 
Disc19 
4.3.1 EQUATIONS OF MOTION 

If we assume that the z-component of the motion of disc 
stars is independent of the motion in the plane, we can 
write for the equation of motion of a star of mass m 
perpendicular to the plane 

 ( ) ( )
z
zm

z
zrmzm

∂
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−≈
∂
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−=

,,θ
&& , (4.1) 

where Φ(ρ,θ, z) is the gravitational potential and the 
approximation follows from the argument of section 4.1 
A dot denotes differentiation with respect to time. 
Assuming that we are only considering small deviations 
from the plane, we can expand ( ) zz ∂Φ∂ as a Taylor 
series and keep only the first order terms: 
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where a prime denotes differentiation with respect to z. 
We shall also assume, reasonably I think, that the disc is 
a plane of symmetry of the galaxy so that the first term 
on the right hand side of equation (4.2) vanishes. We 
can get the second term from Poisson's equation and, 
again following the discussion of section 4.1, we find 
that 

 o0
2

0
2

2

0 4 ρπG
z z

z

=Φ∇≈
∂

Φ∂
≡Φ ′′

=
=

, (4.3) 

where ρo is the density in the plane. Using equations 
(4.1), (4.2) and (4.3), we get as the equation of motion 
in the z-direction 

 ( )zGz o4 ρπ−=&& . (4.4) 

Equation (4.4) shows that, to this approximation, the 
motion perpendicular to the plane is simple harmonic 
and is determined by the density in the disc. If we were 
able to trace out the motion of a disc star in the z-
direction, we could determine the density in the disc. 
This is impossible for external galaxies but it can be 
applied to the Galactic disc in the solar neighbourhood. 
Even here, we cannot, follow the motion of an 

                                                           
18 Note that this differs from the historical use of ϖ – a script π – 
rather than r. 
19 This is not formally part of the course and will not be examined. It 
is here for completeness. 

individual star because the oscillatory period is far too 
long. We have once again to resort to statistical 
arguments. The result is that the density in the solar 
neighbourhood comes out at about 0.15 Msun pc-3. 
Remember that this is derived dynamically. If we try to 
account for this by adding up the contributions of 
directly observed matter, we find a total of about 
0.11 Msun pc-3, made up of about 0.08 Msun pc-3 of stars 
and 0.03 Msun pc-3 of gas. Even locally, in the solar 
neighbourhood, we come across the problem of dark 
matter! 

4.4 Motion of Stars in the Plane of the Disc 
4.4.1 CIRCULAR MOTION20 

If the motion were truly circular about the centre of the 
galaxy, r and z would be constant and we should have 
for the velocity Θ of any star at distance r from the 
centre of the galaxy 

 
r

m
r

m
∂
Φ∂

−=
Θ

−
2

, (4.5) 

which says that the centripetal force necessary for 
circular motion is supplied by the radial gradient of the 
gravitational potential. [The minus sign appears on the 
left-hand side of the equation because the centripetal 
force is directed towards the centre.] What should we 
use for Φ? I have already discussed the existence of 
massive, spherically symmetric halos about spiral 
galaxies when talking about rotation curves in chapter 2. 
Let us therefore make the assumption of spherical 
symmetry of the mass distribution, justifying it by the 
agreement of prediction with observation.  

For a spherically symmetric distribution of matter, the 
gravitational field at a distance r from the centre of the 
distribution depends only upon the material contained 
within r and is directed towards the centre. We can 
therefore write 

 ( ) ( )
2r

rGM
r
r

=
∂
Φ∂  (4.6) 

where M(r) is the total mass contained within radius r. 
From equations (4.2) and (4.6) we find that 

 ( ) ( ) 2/1

⎥⎦
⎤

⎢⎣
⎡=Θ

r
rGMr . (4.7) 

We have already seen in chapter 2 that rotation curves 
are very flat so a reasonable approximation, for regions 
other than the central parts of the galaxy, is to assume 
that Θ is independent of r, i.e. 

 constanto =Θ=Θ . (4.8) 

                                                           
20For convenience, I reproduce some of the discussion of Chapter 2 
here. 
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As we have seen in chapter 2, the consequence of this is 
that the mass M(r) increases linearly with r and that the 
density ρ(r) falls off as the inverse square of r. 

4.4.2 EPICYCLIC MOTION 

We have so far considered stars in perfectly circular 
orbits although we know that this is only an 
approximation. As well as the z-component of motion, 
which we have already considerrd, disc stars have small 
peculiar velocities within the plane, superimposed upon 
their circular motion. 

r
ro

Θo

r dθ/dt

 
Figure 3-13. Perturbation of circular motion. 

Suppose we take an individual star with circular 
velocity Θο, at radius ro from the centre of the galaxy, 
and displace it slightly in the radial direction to distance 
r, as shown in Figure 3-13, whilst keeping its angular 
momentum the same. What will its subsequent motion 
be? Because the only force acting is a central force, the 
star’s angular momentum must remain constant after the 
displacement. Now the angular momentum L is given 
by  

 Ω=Θ= 2mrmrL , (4.9) 

where m is the mass of the star and Ω is the angular 
velocity of the star about the centre of the galaxy: 

 θ&=Ω . (4.10) 

The constancy of the angular momentum requires that 

 ooo
2

o
2 Θ=Ω=Ω=Θ mrmrmrmr . (4.11) 

The star’s circular velocity Θ is therefore given by 

 
rr

r 1o
o ∝×Θ=Θ . (4.12) 

As the star moves out, therefore, its circular velocity 
will decrease from the unperturbed value of Θo. It will 
therefore be moving around the centre of the galaxy 
slower than the other stars which are in circular orbit at 
this slightly larger radius and which therefore have 
velocity Θo. Relative to these stars, therefore, the 
perturbed star will appear to be moving backwards. 
Furthermore, with its reduced velocity, it will not have 

sufficient centrifugal force to overcome the gravitational 
force and it will tend to drop in towards the centre of the 
galaxy. As it drops down below its original circular 
orbit at ro, it will continue to conserve angular 
momentum and this means that the it will now be going 
too fast with respect to stars in circular orbit at this 
reduced radius and will overtake them. It will also now 
having too much centrifugal force, will move back out 
again … . 

ro

Θo

 
Figure 3-14. Rotating frame of reference. 

This is best illustrated by using a frame of reference 
rotating with angular velocity Ωo such that 

 ooo Θ=Ωr . (4.13) 

In this rotating frame of reference, an unperturbed star  
at radius ro appears be at rest. By the arguments above, 
the perturbed star will appear to be moving backwards 
in this frame when it is at radii r > ro and moving 
forwards when r < ro, as shown in Figure 3-14. This 
motion of a perturbed star is called epicyclic motion, 
from the Greek επι meaning upon and κυκλος meaning 
circle. 

The detailed treatment of this epicyclic motion is 
tedious and I simply quote the results here. In the frame 
of Figure 3-14 a star at radius r traces out an ellipse21 
with angular frequency κ(r), given by 

 ( ) ( ) ( ) ( )[ ]rBrArBr −−= 42κ , (4.14) 

where the Oort parameters A(r) and B(r) are given by 
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rrB
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rrA

 (4.15) 

It is easy to see that A is a measure of the differential 
rotation of the galaxy: if the galaxy were to rotate like a 
solid body – that is with constant angular velocity – A 

                                                           
21Note that the frame in which an epicyclic orbit appears as an ellipse 
depends upon the radius r from the centre; different frames must be 
used at each radius. 
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would be zero and B would be equal to the minus 
angular velocity Ω. 

4.4.3 RESONANT ORBITS 

In general, the orbit of a star undergoing epicyclic 
motion will not be closed in the inertial (non-rotating 
frame). Consider the radial component of epicyclic 
motion for a star at radius r. [The angular component of 
the motion will look after itself.] The frequency of 
radial oscillation is κ/2π so that the time Tepicycle(q) taken 
for the star to complete q radial epicyclic oscillations is 
given by 

 ( )
κ
π2

epicycle ×= qqT . (4.16) 

The frequency of rotation about the centre of the galaxy 
is Ω/2π so that the time Torbit(p) needed for p complete 
orbital rotations about the centre of the galaxy is given 
by 

 ( )
Ω

×=
π2

orbit ppT . (4.17) 

The orbit of a star would therefore be closed after p 
orbits of the galaxy if 

 ( ) ( )pTqT orbitepicycle =  (4.18) 

or, from equations (4.4) and (4.17), if 

 
κ
qp

=
Ω

. (4.19) 

Condition (4.19) will not normally be met in the inertial 
(non-rotating) frame which we have used previously. It 
is always possible, however, to choose a rotating frame 
in which the epicyclic orbits of stars at any particular 
radius from the centre of a galaxy are closed. Consider 
a frame rotating with velocity Ωp (the reason for the 
choice of subscript will become clear later). In this 
frame, the orbital angular velocity Ω′ of the star is given 
by 

 pΩ−Ω=Ω′ . (4.20) 

The condition for closure in this frame is, therefore, 

 
κ
qp

=
Ω′

± . (4.21) 

The ± sign occurs because Ω′ may be positive or 
negative; in other words, Ωp may be smaller or larger 
that Ω (p and q are positive by definition). From 
equations (4.20) and (4.21), we get for closure of orbits 

 κ
q
p

±Ω=Ωp . (4.22) 

We shall see later that, for our Galaxy, the values p = 1, 
q = 2 have special significance. 

I have spent some time on this topic because it is 
relevant to the study of spiral structure. The next section 
develops another aspect of this that is particularly 
important. 

4.5 Spiral Structure 
4.5.1 INTRODUCTION 

The spiral pattern seen in many galaxies is one of the 
most beautiful and spectacular sights in astronomy. We 
see no other regular pattern on such an enormous scale. 
It is therefore natural that a lot of effort has gone into 
trying to explain this structure. In spite of this, the 
origin of spiral patterns is not entirely clear although we 
do seem to have a satisfactory explanation of how they 
may maintain themselves once they have formed.  

4.5.2 THE WINDING PROBLEM 

t = 0

t > 0

r3

r2

r1

 
Figure 3-15. The origin of the winding problem. 

We can see very easily that the material in each spiral 
arm of a galaxy must constantly be changing. Figure 
3-15 shows three stars or clouds of gas at different 
radial distances r1, r2 and r3 from the centre of the 
galaxy, where 

 312 2
1

2
3 rrr == . (4.23) 

Initially, at time t = 0 say, these clouds happen to be 
aligned along a radius. If they were to remain so aligned 
the galaxy would have to rotate as a rigid body and the 
angular velocity Ω(r) at any radius r would actually be 
independent of r. We have seen, however, that far from 
Ω being constant, it is the circular velocity Θ(r) which 
is approximately independent of r. Let us assume for the 
moment that Θ is truly constant with value Θo so that 

 ( ) ( )
rr

rr oΘ
=

Θ
=Ω . (4.24) 

The, after a time t, a star at radius r will have turned 
through an angle θ (r,t) given by 
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 ( ) ( ) t
r

trtr o,
Θ

=Ω=θ . (4.25) 

Consider two clouds at radii r1 and r2. It is clear that the 
cloud at radius r2 will have moved through only half the 
angle that the cloud at r1 has moved in any given time. 
This is shown in Figure 3-15; at time t, the third cloud 
from the centre has moved through an angle of only π/4 
while the second cloud out has moved through π/2. 

It might be argued that this differential rotation gives 
just the spiral pattern we are looking for. It is easy to see 
that this cannot be so. The time for a cloud to complete 
an orbit of a galaxy, although obviously dependent on 
its distance from the centre, is of the order of 108 years. 
On the other hand, galaxies are some 1010 years old, as 
we shall see later. In the lifetime of the galaxy, 
therefore, there have been some hundred or so orbits. If, 
for the sake of argument, I assume that the innermost 
cloud out in Figure 3-15 had completed 100 orbits, then 
the outermost cloud out would have completed 200 and 
the line joining them in the figure would be wound up 
one hundred times. Because we do not see galaxies with 
arms wound this tightly, we must seek some mechanism 
which preserves the relatively loosely wound spirals. 

Although the tightness of winding in spirals changes as 
one goes along the Hubble sequence, the arms being 
less tightly wound in later types than in earlier, the total 
range is not large. There is no evidence, moreover, that 
the sequence is an evolutionary one, and that arms are 
either winding or unwinding. We are therefore justified 
in assuming that it is the spiral pattern that remains 
more or less unchanged with time. This can only be 
achieved if the pattern rotates like a rigid body, with 
angular velocity Ωp, independent of radius from the 
centre of the galaxy.  

4.5.3 THE PHYSICAL MECHANISM SUSTAINING SPIRAL 
ARMS 

If we reject the idea that the stars and clouds of gas 
making up an arm at any given time remain within that 
arm, the only alternative is that new material must be 
moving through the arms, flowing in at one side and out 
the other. In this section, I give a qualitative description; 
some more quantitative detail is given in the next in the 
next section. 

Figure 3-16 shows the basic scheme for a two-armed 
spiral. We assume that the spiral pattern, represented by 
the thick lines, rotates like a rigid body with angular 
velocity Ωp and that the stars and gas move in 
essentially circular orbits, represented by the thin lines, 
around the centre of the galaxy. I shall also assume that 
this material is always overtaking the arms. In this 
model, the arms represent concentrations of matter so 
that the density in the arms is higher than in the rest of 
the plane. The gravitational potential in the disc, 
therefore, no longer has axial symmetry. Because of this 
distortion in the potential, the stars and gas will be 
perturbed slightly from their circular orbits. If the 
system is to be self-perpetuating, this perturbation must 

be just such as to maintain the distortion of the 
potential. 

 

a

c

b

 
Figure 3-16. Maintenance of spiral structure. 

The behaviour can be seen qualitatively from the figure. 
Consider first a star or cloud of gas at position a. It is 
roughly equidistant from both arms and will therefore 
suffer no net radial force. At b, on the other hand, it will 
be attracted outward by the extra material in the nearer 
(outside) arm and will move to a slightly larger radius. 
Conserving its angular momentum, it will slow down a 
little in its orbit and will tend to linger in the vicinity of 
the arm. The material bunched in this way gives rise to 
the additional potential that caused the bunching in the 
first place. When a star eventually leaves a spiral arm, 
as at c, it is attracted inwards and speeds up, so 
regaining its initial speed. In this way, the spiral 
perturbation is preserved although the material which 
gives rise to it is constantly changing22. 

a

c

b

orbit

potential

 
Figure 3-17. Spiral perturbations in a rotating frame. 

                                                           
22 The effect is similar to a bottleneck on a motor way. Assume a 
steady state of motion, not a complete jam, so that cars leave the jam 
at the same rate as those joining it. If one carriageway is closed off, 
there are more cars per unit length of the motor way there than at other 
places. Note that, although the increased density of traffic is always at 
the same place, it is made up of a constantly changing population of 
cars. 
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The effect is shown schematically in Figure 3-17,  
which is drawn in a frame of reference rotating at the 
angular velocity Ωp of the two-armed spiral pattern. The 
force acting on the object – a star or cloud of gas – is 
represented by the arrows between the circular orbit of 
the object and the ellipse representing the departure 
from circular symmetry of the gravitational field. 
Clearly this distorted gravitational field subjects the 
object to a perturbing force of frequency Ω′ given by 

 pΩ−Ω=Ω′ . (4.26) 

4.5.4 DENSITY-WAVE THEORY23 

The accepted description of spiral structure is that a 
density wave propagates through the material of the disc 
(see [2], for example). The full treatment of density 
waves in complicated and I shall outline the procedure, 
giving results that are valid only for tightly-wound 
spirals. 

Calculate resultant
gravitational
perturbation

Set up perturbed
mass distribution

Calculate
response of stars

to perturbation

Calculate
response of gas
to perturbation

Calculate resulting
mass distribution

 

Figure 3-18. Self-consistent solution for density waves. 

The overall procedure is shown in Figure 3-18. Starting 
at the top left-hand corner, we set up an initial perturbed 
mass-distribution and calculate the resultant 
gravitational potential. We then calculate separately24 
the dynamical responses of the stars and the gas to this 
distribution. Finally, we calculate the mass distribution 
resulting from these responses and the corresponding 
potential. This potential is fed back into the start of the 
process and we continue going around the loop until the 
result is self-consistent.  

The behaviour of the gas is well described by the 
equations of hydrodynamics. As we saw in section 2, 
however, stars are virtually collisionless in their motion 
and this makes stellar dynamics difficult. Fortunately 
we can obtain rather good insight to the behaviour of 
density waves by ignoring completely the presence of 
the stars. This is at first sight surprising when you 
consider that the stars dominate the mass of the disc. I 
shall explain the reason later. 

Rather than deal with the volume density – the mass per 
unit volume ρ – it is convenient to use the surface 
density σ, the mass per unit surface area of the disc. 
Obviously, 

                                                           
23 The analytical details of this section will not be examined. 
24 Remember that the stars and gas behave very differently. 

 ( ) ( )dzzrr ∫
+∞

∞−

= ,,, θρθσ . (4.27) 

As when we dealt with sound waves, let us consider a 
first-order perturbation σ 1(r,θ,t) to the unperturbed, 
cylindrically symmetric time-independent distribution 
σ 0(r): 

 ( ) ( ) ( )trrtr ,,,, 10 θσσθσ += . (4.28) 
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Figure 3-19. Spiral pattern. 

Let us try solutions of the form25 

 
( ) ( )[ ]

[ ]φσ
θασθσ

i
krmtitr

exp
exp,,

o1

o11

=

−−=
 (4.29) 

Why? Because it represents a rotating, spiral wave. To 
see this, consider the pattern generated by following the 
locus of constant values of σ 1. From equation (4.29) we 
have 

 constant2 o ==+−− φπθα nkrmt , (4.30) 

where the term n2π appears because σ 1,  given by 
equation (4.29), is periodic in φ with period 2π. Adding 
n2π to φ does not therefore change σ 

 1. Let us first trace 
the pattern at a given time which, for convenience, we 
take as t = 0; then we have 

 constant2 o =−=−+ φπθ nkrm . (4.31) 

From equation (4.31), we have 

 ( )o21 φθπ −−= mn
k

r , (4.32) 

which is an m-armed spiral, as shown in Figure 3-19 for 
m = 2. [For clarity, the second arm is shown dashed.] To 

                                                           
25 In fact, we should represent the density wave as a Fourier series of 
similar terms but the first-term is adequate for demonstrating the 
principles of the theory. 



ASTM-052 Extragalactic Astrophysics  Note 3 
 

© P E Clegg 2001 - 18 - Version 1.0 (03/10/2001) 

see this, consider the moving an angle Δθ around the 
pattern at a constant value of r. If we are get to a point 
where the phase – and therefore σ 1 – has the same 
value φo, we must have from equation (4.31). 

 ( ) ( ) o21 φπθθ −=+−+Δ+ nkrm  (4.33) 

so that 

 
m
πθ 2

=Δ  (4.34) 

and the pattern repeats every 2π /m.  

The radial distance λ between adjacent arms of the 
spiral – the wavelength of the spiral wave – is got by 
keeping  the angle θ fixed and putting 

 ( )[ ]θπφλ mn
k

r −++=+ 211
o . (4.35) 

Taking equation (4.32) from equation (4.35), we get 

 
k
πλ 2

=  (4.36) 

so that k has its usual meaning of wavenumber. 

If we differentiate equation (4.30) with respect to t at 
constant r, we get 

 
mt r

ωθ
=

∂
∂

 (4.37) 

so that the spiral wave rotates at a speed Ω p given by 

 
m
ω

=Ωp . (4.38) 

Finally, differentiating equation (4.30) with respect to t 
at constant θ we get 

 
kt

r ω

θ
=

∂
∂  (4.39) 

so that, at a given angular position, a wave with wave-
vector k advances radially into the interstellar gas with 
velocity vspiral given by 

 
kmk

v p
spiral

1 Ω
==

ω . (4.40) 

4.5.5 THE LINEARISED  

Because we are taking σ 1 to be small compared with 
σ 0, we seek to linearise the equations of 
hydrodynamics, again as we did for sound waves. I shall 
not go into details, because these are messy, but simply 
quote the results. The only difference between this and 
the earlier treatment is that we now have two-
dimensional, rather than three-dimensional, 
hydrodynamics because we are considering the surface 

density of gas in the plane. Because the equations 
involve pressure, we need the two-dimensional 
analogue of the three-dimensional pressure p. 

In a classical gas at temperature T, we have 

 nkTp = , (4.41) 

where n is the number-density of molecules. We also 
have that 

 kTvvnm
2
3

2
1

2
1 22 =⎥⎦

⎤
⎢⎣
⎡= ρ , (4.42) 

where m is the mass of the molecules. Hence 

 2

2
1 vp ρ= . (4.43) 

It turns out that, in interstellar gas, the overall pressure 
is dominated by the mean-squared turbulent velocity 
<a2> of the gas, rather than the mean-squared velocity 
of the molecules. Equation (4.43) is therefor replaced 
with 

 2

2
1 ap ρ= . (4.44) 

Finally, it is easy to show that the two-dimensional 
pressure26 P is given, in terms of the surface-density σ, 
by 

 2aP σ= . (4.45) 

After solving the linearised equations, we get for σ 1, 

 ( ) 222
p

22
radial

0

o1

akm

kg
i

+Ω−Ω−
−=

κσ
σ

,  

where κ is the epicyclic frequency defined in equation 
(4.14) and gradial is the radial component of the perturbed 
gravitational force, given by 

 
k
kiGg o1radial π2 σ= . (4.46) 

4.5.6 THE DISPERSION RELATION 

If I substitute for gradial from equation (4.46) into 
equation (4.49), we get after some manipulation 

 ( ) kGkam 0
2222

p
2 π2 σκ −+=Ω−Ω , (4.47) 

which, using equation (4.38), can also be written as 

                                                           
26 The dimensions of P are force per unit length, rather than the force 
per unit area of p. 
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 ( ) kGkam 0
2222 π2 σκω −+=Ω− . (4.48) 

You should compare this with the dispersion relation 
(3.54) for sound waves in a gravitational field: 

 o
222 4 ρπω Gku −= .  

On the left-hand side of both equations appears the 
frequency of the perturbation, albeit modified by the 
pattern frequency in the case of the density wave. On 
the right-hand side in both cases, the wave-vector 
appears multiplied by a velocity and gravity appears in a 
destabilising term, albeit involving the wave vector k in 
the density-wave case. [Remember that it is this term 
that gave rise to gravitational collapse in section 3.2.7.] 
In the case of the density wave, the gravitational term is 
off-set by the essentially positive term involving the 
epicyclic frequency. 

Let us re-write equation (4.47) again, now in the form 

 22

o
1 ν−+= x

k
k

, (4.49) 

where: 

• 
0

2

o π2 σ
κ
G

k = ; (4.50) 

• Toomre's stability number x, is given by 

 2

22

κ

ka
x = ; (4.51) 

• the dimensionless, normalised frequency ν is given 
by 

( )
κ

ν
Ω−Ω

= pm
. (4.52) 

Before we analyse the dispersion relation (4.49), let us 
think for a moment about the normalised frequency ν. 
At any distance from the centre of the galaxy, (Ωp - Ω) 
is difference in angular velocity between the spiral 
pattern and the gas. Because there are m arms in the 
pattern, the gas therefore meets a spiral arm with 
frequency m(Ωp - Ω)/2π. In time T, therefore, the gas 
has m(Ωp - Ω)T/2π encounters with an arm. In the same 
time, an individual cloud will make κT/2π epicyclic 
oscillations. Hence ν, which can be re-written as, 

 
( )[ ]

[ ]π2
π2p

T
Tm

κ
ν

Ω−Ω
= , (4.53) 

measures the number of encounters of a gas cloud with 
a spiral arm per epicyclic oscillation. If ν is an integer, 
then there is resonance between epicycles and arm 

encounters and we might expect this to cause havoc 
with the motion (see below). 

Returning to (4.49), we see that the left-hand side of the 
equation is essentially non-negative. In fact, if we are to 
have a wave at all, so that | k | is not zero, then the left-
hand side must be positive so we must have 

 22 1 x+>ν , (4.54) 

This relation must be satisfied if the gravitational 
perturbation, produced by the perturbation in surface 
density σ 1, actually acts to bring about that perturbation 
in density. In other words, (4.54) is a condition for self-
consistency. From (4.54), we have 

 22 11 xvx ++<<+−  (4.55) 

or, from equation (4.52), 

( ) ( ) ( ) ( ) 2
p

2 11 x
m
rrx

m
rr +−Ω<Ω<+−Ω

κκ , (4.56) 

where I have restored the explicit dependence of the 
frequencies Ω(r) and κ(r) from the centre of the 
galaxy27. Relation (3.32) tells us that the pattern speed 
Ωp – which must be constant if we are to have an 
enduring density-wave – is constrained to lie between 
values that are a function of r. 

If the root-mean-squared turbulent velocity <a2>1/2 were 
zero, then x Toomre’s stability number would also be 
zero and we should have 

 ( ) ( ) ( ) ( )
m
rr

m
rr κκ

+Ω<Ω<−Ω p . (4.57) 

(Ω − κ/m) and (Ω + κ/m) are called the inner an outer 
Lindblad resonances, respectively. The condition (4.57) 
is easy to understand physically. In terms of the 
dimensionless frequency ν, it is 

 11 +<<− v . (4.58) 

Remembering the discussion following the definition of 
ν (4.52), we see that inequality (4.58) says that we must 
avoid resonances between the frequency with which a 
gas cloud meets perturbing effects of the arms and its 
epicyclic frequency28. We know that, if we repeatedly 
“hit” something at its resonant frequency, the 
oscillations tend to build up and the object may destroy 
itself. A dramatic example of this in “everyday” life is 
collapse of the Tacoma Narrows suspension bridge in 
Washington State, USA, recorded in a famous film 
sequence. In the absence of any turbulent velocity, 

                                                           
27 x(r) is also a function of this distance. 
28 This is just a special case of the condition for resonant orbits 
discussed previously. 

  . 
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therefore, spiral density waves can therefore only exist 
between the Lindblad resonances.  
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Figure 3-20. The Lindblad resonances. 

Figure 3-20 shows Ω(r), κ(r) and the two Lindblad 
resonances for a two-armed spiral, plotted as a function 
of distance r from the centre of a galaxy. It is clear from 
the diagram that a spiral wave whose angular velocity is 
about 13 radians per 108 years, for example, can exist in 
this galaxy only between about 0.5 and 1.5 kpc from the 
centre. Note that the circle of co-rotation, where 
Ωp = Ω, lies between the two resonances. 

In practice, the turbulent velocity is not zero and 
inequality (4.55) shows that this turbulence increase the 
range over which the spiral pattern can exist. Hence the 
name stability number for x. 

4.5.7 THE EFFECTS OF AND ON THE STARS 

You will remember that we have totally neglected the 
stars in the above discussion. This is not entirely 
justified but we can see qualitatively that only a fraction 
of them respond to the perturbations. The stars will be 
undergoing epicyclic motion and they will be doing so 
almost unaffected by the other stars (the collisionless 
approximation) in sharp contrast to the gas. A star will 
therefore freely wander in and out about its mean radius. 
Those stars whose radial epicyclic excursions take them 
more that the spacing between arms will naturally 
become confused about which arm they are supposed to 
be reacting to. They will not therefore respond to the 
perturbations. Only a fraction of the stars, therefore, 
those that have radial amplitudes small compared with 
the inter-arm spacing, will respond to the density waves. 
That is why we can get a good approximation using the 
gas alone. 

4.5.8 THE SPEED OF A SPIRAL PATTERN 

Although we have come up with a plausible theory of 
spiral structure, we have not yet compared this with 
observation. Let us first try to fit the pattern speed Ωp of 
a given spiral. 

Equation (4.29) can be re-arrange to give θ as a function 
of r: 
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If we follow a maximum value of σ 1 – that is, if we 
follow and arm – at some fixed value of t we can write 
equation (4.59) as 

 { } ( )rkr
m

Ψ=+−= constant1θ . (4.60) 

say29. Knowing now that spiral structure can exist only 
between the limits given by (3.40), I can re-write this as 
the integral of the derivative of Ψ: 
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where rin is the inner limit given by (4.56). It is clear 
that the solution of (4.48) for k depends only on Ωp, 
Ω(r), κ(r), <a2(r)>1/2 and σ 0(r), all of which are 
observable quantities in principle. We can therefore 
write 
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and adjust the parameter Ωp so that the model fits the 
observed run of θ(r) with r. Typical values of Ωp are 
found to be in the range 10 to 40 km s-1 kpc-1, 
corresponding to a rotational period for the pattern of 
about 100 to 500 million years. 

4.5.9 TESTING THE THEORY 

I have described a model of spiral structure that consists 
of linear sinusoidal waves of density in the material of 
the galactic disc. Why should these produce the visible 
spiral structure, which consists of mainly massive young 
stars and their associated HII regions? In fact linear 
theory is inadequate for this and we have to introduce 
some non-linear element. When we do this, we find that 
shock-fronts exist in the spiral arms. We shall also see 
that only trailing spiral arms are likely to exist. 

If we take the azimuthal angle θ to increase in the 
clockwise direction, equation (4.29): 

 
( ) ( )[ ]

[ ]φσ
θασθσ
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exp,,
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o11

=
−−=

  

descibes a trailing spiral, as shown on the left of Error! 
Reference source not found.. To see this, consider 
following with t a locus of constant phase at a given 
radius. Then we have 

                                                           
29 Remember that, in general, k(r) will be a function of r. 
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This shows that the spiral rotates clockwise. Now 
consider following with r a locus of constant phase at a 
given time. We have 
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so that 
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so that the angle decreases with r.  

 

 

Figure 3-21. Trailing and leading spirals. 

For a leading spiral, also rotating clockwise and shown 
on the right of Figure 3-21, the equation corresponding 
to (4.29) is 

 ( ) ( )[ ]krmtitr +−= θασθσ exp,, o11 . (4.67) 

In a trailing spiral, the wave advances outward into the 
disc: at constant θ , 
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whereas it advances inward in a leading spiral. 

In a leading spiral, therefore, the wave front moves 
toward generally less dense material in which the speed 
of sound is lower. It therefore tends to pile up on itself 
until it produces a shock front, as describes in section 
3.2.9. As I shall show shortly, this tends to produce 
stars. The leading spiral, on the other hand, is moving 
into a region of increasing density and higher speed of 
sound. This allows the wave to “get away from itself” 
and reduces the effect of the perturbation. Since the 
spiral arms are dominated by hot young stars, therefore, 

we may conclude that only trailing waves are likely to 
exist30. 

Remember the discussion of Jeans collapse in sections 
3.1.3 and 3.2.7. We saw there that only clouds of gas 
greater than a critical size could collapse to form stars. 
This critical size was inversely proportional to the 
square root of the density, as shown by equation (3.66). 
Suppose now that a cloud a little above the critical size 
enters a shock front. This will compress the cloud, 
increasing its density. If the increase in density is 
sufficient, the cloud will now be less than the critical 
size and will collapse in the free-fall time given by 
equation (3.70). Hence shock waves are capable of 
causing gas clouds to collapse to form stars in times of 
the order of 106 y31. Since the orbital period of the 
material about the centre of the galaxy is some 108 
years, this means that stars form within a few degrees of 
the shock front. The massive O and B stars, which 
distinguish the arms, stay on the main sequence for only 
about 106 years so that we should expect the arms 
themselves to be a few degrees wide, as indeed we 
observe. All this is quite well illustrated in the image of 
the Whirlpool galaxy, shown in Figure 3-22. 

 
Figure 3-22. Star-formation in the Whirlpool galaxy. 
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30 In a few cases, it is possible to measure the sense of the spiral arms 
of a galaxy directly (cf. [1]). In all such cases, the wave are found to 
be trailing. 
31This is an over-simplified description of star-formation in spiral 
arms. For more detail see the course PHY-410 The Interstellar 
Medium. 


