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CHAPTER 4: ACTIVE GALAXIES  

1. Introduction 
The number of known types of galaxies showing 
unusual activity has grown over the years to the point at 
which the activity itself can hardly be considered 
unusual, even if its origin is not well understood. 
Moreover, similar sorts of activity, albeit on a smaller 
scale, are seen in objects usually considered to be 
“normal”. Many astronomers are therefore coming to 
the view that we are seeing different mixtures, on 
different scales, of one or two basic phenomena. 

In this section, I shall first identify the various types of 
active galaxy and discuss their properties. I shall then 
review the whole phenomenon.  

2. Properties of Active Galaxies 
2.1 Overview 
Active galaxies are frequently described as showing 
violent or energetic activity. Perhaps a more useful 
definition is galaxies displaying phenomena that cannot 
be ascribed to normal stellar processes, although this 
begs the question of what constitutes a “normal” stellar 
process. It could be, for example, that the activity seen 
in some nuclei is the result of a violent burst of star-
formation. In all cases, the activity seems to be 
connected with the nucleus of the galaxy, whence the 
term active galactic nucleus (AGN). In general, AGN 
show some combination of the following features: 

1. They have bright, star-like nucleus. In a short-
exposure image of the galaxy, only the point-like 
nucleus is apparent. On longer exposure, the 
nucleus saturates the detector – photographic plate 
or CCD – and the rest of the galaxy becomes 
apparent, although for quasars, this is only seen 
with great difficulty. 

2. The nucleus radiates over a very wide range of 
wavelengths, from radio (in some cases) to X-rays. 
This is unlike stars, which radiate mostly at optical 
wavelengths, and normal galaxies, which are 
dominated by starlight and the infrared emission 
from cool interstellar dust. 

3. The spectra of AGN are unlike those of normal 
galaxies, being very blue and having no absorption 
lines characteristic of starlight, but having strong 
emission lines. 

4. The spectral energy distributions (SED), defined by 

 ( )νν S=:SED , (2.1) 

of AGN are quite unlike those of normal galaxies. 
For most AGN, the SED is roughly constant but 
follows a power law from the hard X-ray region of 
the spectrum to the far-infrared (far-IR), the 
radiation being unpolarised. In radio-loud AGN, 
this continues out to the radio region. In blazars, 

the SED has a smooth broad hump and is strongly 
polarised.  

5. The SEDs typically have two “bumps” on top of the 
power-law.  

The blue bump is an excess, rising from the optical 
to the ultraviolet (UV). There is some evidence that 
this bump is seen descending again in the soft X-
ray region in which case it presumably peaks in the 
extreme ultraviolet (XUV), at ν ~ 1016 Hz; this 
corresponds to a temperature of ~ 300,000 K. The 
peak cannot be observed directly because the 
Galactic interstellar medium is opaque in this 
region of the spectrum. 

The X-ray bump occurs in the hard X-ray region 
with ( ) ( )7.0~−∝ ννS  [so that νS(ν) is rising with 
frequency] and is still rising at E > 20 keV, 
corresponding to a temperature of ~ 108 K. 

6. The strong emission lines are much too highly 
excited to be the result of ionisation from OB stars 
and are presumably ionised by the photons from the 
blue bump. The lines can be very broad, 
presumably the result of Doppler broadening with 
velocities  ~ 10,000 km s-1. 

7. Many radio sources have double radio lobes, 
symmetrical “blobs” on either side of the central 
galaxy. These are very large structures, tens of 
kiloparsecs in size and separated from the central 
galaxy by ~ 50 kpc to 1 Mpc. The spectrum of radio 
emission from these lobes is a power law of the 
form ( ) ( )7.0~−∝ννS . There is often a bridge of 
radio emission between the lobes and the central 
galaxy. 

8. Many radio galaxies have relativistic jets of 
material pointing at the lobes. These jets seem to be 
made up of blobs of material that appear to be 
moving away from the galaxy faster than light! 
Although we shall see that this is an optical 
illusion, it does mean that the material in the jets 
must be travelling at velocities close to that of light. 

9. The brightness of AGN can vary very rapidly. The 
X-rays from NGC 4051, for example, change by a 
factor of 2 in 30 minutes! The variability tends to 
depend upon wavelength: 

X-ray Hours to days 

Optical Weeks to years 

Far-infrared Invariable 

10. Since an object's output cannot change coherently 
faster than the time it takes light to cross it, this 
puts limits on the sizes of the emitting regions and 
suggests enormous powers are being generated in 
very small regions, sometimes smaller than the 
solar system (see below). 

11. The total power of AGN is hard to estimate because 
of the great spread of wavelengths and also because 
of the variability. The weakest known AGN are in 
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nearby galaxies with luminosities L ~ 1033 W, 
whilst the most powerful distant quasars have 
L ~ 1040 W. You should compare this with our 
Galaxy, which has L ~ 1010 Lsun or ~ 1033 W. In the 
most luminous cases, the nucleus can outshine the 
whole of the rest of the galaxy! 

Before trying explain these observations, let us look 
briefly at the various types of active galaxy; a fuller 
discussion is given in [1] 

2.2 Seyfert Galaxies 
Carl Seyfert first noticed a class of spiral galaxy with 
very bright nuclei in 1943. These were the first AGN to 
be recognised and represent the mildest form of activity. 
As well a dominating the light from the rest of the 
galaxy, the output from Seyfert nuclei can vary in less 
than a year. This sets an upper limit to the size of the 
region responsible for the emission.  

Δr

δt

Δt=Δr/c

 
Figure 4-1. Limits on size of variable objects. 

The upper part of Figure 4-1 shows schematically a 
point source whose luminosity increases and decreases 
on a time-scale δ t. The lower part of the figures shows 
an extended source, each part of which brightens and 
fades on the same time-scale δ t. The overall 
brightening and fading of the source, as seen by an 
observer, occurs over a longer time-scale Δt because the 
observed change in luminosity of the more distant parts 
of the source arrives later than that of the nearer parts. 
In general, we deduce that in an object whose 
luminosity varies on a time-scale Δt, size of the region 
responsible for the is emission is cannot be larger than 
Δr, where 

 tcr Δ<Δ ~ . (2.2) 

One light year, which is about a third of a parsec, is 
extremely small compared with sizes of galaxies, which 
are the tens of kiloparsecs in diameter. 

As with other AGN, the spectra of Seyferts differ from 
those of “normal” galaxies. The latter have a continuum 
spectrum – corresponding to the blackbody curves of 
stars – containing the absorption lines of the stellar 
atmospheres. Seyfert spectra have emission lines sitting 
on top of their continua: this suggests the presence of 
hot gas. The continua themselves, are not the thermal 
spectra that are seen, for example, in HII regions. 

Spectroscopy of Seyferts also distinguishes two types, 
Seyfert 1 and Seyfert 2. In Seyfert 1 spectra, the 
hydrogen Balmer lines (and other permitted lines) have 
velocities some thousands of km s-1 wide. It is clear that 
the thermal motions of individual atoms cannot produce 
these widths: the temperatures necessary for such 
thermal broadening would ionise the hydrogen and there 
would no Balmer lines to be broadened! If the 
broadening does not arise from the motion of the 
individual molecules, it must be caused by bulk motion 
of the gas: either the gas is rotating at high speed around 
the centre of the galaxy or it is being expelled at high 
speed. Remember that typical orbital velocities in 
normal spiral galaxies are hundreds of km s-1. If the 
widths are caused by rotation, it implies that the Seyfert 
galaxies have masses of ~ 109 Msun within less than a 
light-year of their centres. This represents a very high 
density. Could Seyfert 1 galaxies harbour a black hole 
in their centres? 

Seyfert 1 spectra also contain forbidden lines which are 
much narrower (hundreds of km s-1) than the hydrogen 
lines. Presumably these lines are formed further from 
the nucleus where the orbital velocities are lower. [The 
velocities are still higher than typical in normal 
galaxies.]  Because they are forbidden lines, they must 
certainly come from regions of relatively low density.  
In Seyfert 2 spectra, permitted and forbidden lines have 
the same widths, both being several hundred to a 
thousand km s-1. It is likely that Seyfert 1s and 2s are 
not completely different types of object, the broad-line 
regions existing in Seyfert 2s but being obscured by 
dust. There is support for this in the fact that Seyfert 2s 
tend to be stronger infrared sources than Seyfert 1s, 
suggesting that the ultraviolet radiation from the broad-
line region is absorbed by dust which then re-radiates it 
in the infrared. Alternatively, Seyfert 2s could be 
Seyfert 1s in which the central source of power has been 
“turned off” so that the gas in the broad-line region is no 
longer excited. This is a possible explanation for NGC 
4151's having been seen to change from type 1 to type 
2. 
Seyfert galaxies make up about 1% of the population of 
spirals. An obvious interpretation is that 1% of spirals 
“choose” to be Seyferts all their lives. There is an 
alternative explanation, however. Because of the time-
scales involved, we are unable to wait long enough to 
see galaxies evolve significantly. When we look at the 
sky, therefore, we see a snapshot of all galaxies at one 
moment in their evolution. It is possible that all galaxies 
go through a “Seyfert phase”, spending 1% of their lives 
as Seyferts. Since there are signs of some level of 
activity in almost all galaxies, this is perhaps the more 
likely explanation. 

2.3 Quasars and BL Lacertae Objects 
The first quasar to be identified was 3C48. As its name 
implies, this is a radio source, being the 48th source in 
the Third Cambridge Catalogue of radio sources. The 
closest optical object to the radio position was a 16m 
object whose image was indistinguishable from that of a 
star, hence the name quasi-stellar (radio) source or 
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quasar.  I have put the word radio in brackets because I 
want to emphasise that, although the first quasars to be 
identified were radio sources, we now know that only 
about 1% or so of quasars are strong radio sources. 
Radio-quiet quasars are often QSOs; less often (radio-
loud) quasars are called QSRs. The terminology is not 
universal or unambiguous.  

Although 3C48 looked star-like on the phtographic 
plates, its spectrum was very different from that of a 
star, being very blue and having unidentified broad 
emission lines and a non-thermal continuum, very 
similar to that of Seyfert 1s. The emission lines were 
first identified by Maarten Schmidt of Palomar 
Observatory. Working on another radio quasar, 3C 273, 
he showed that the pattern of some lines could be 
explained as hydrogen Balmer lines with what was, for 
the time, a huge redshift of 0.158. Interpreting the 
redshift as a Doppler effect gave a velocity of recession 
nearly 16% of the velocity of light. If 3C273 were a 
local object, its enormous velocity of recession would 
be hard to explain. Nowadays, quasars with redshift 
greater than 5 are known and it becomes almost 
impossible to maintain that they are local objects. The 
redshift of quasars is therefore generally accepted to be 
cosmological in origin. This view is not universally 
held. Halton Arp, for example, argues that some quasars 
at least are physically associated with galaxies that have 
much lower redshifts. If this is the case, then some “new 
physics” is required to explain the redshifts of these 
quasars (cf. for example [2]). The alternative 
explanation of gravitational redshift possibility is easily 
ruled out (cf. page 317 ff. of [3]). 

The problem with the cosmological interpretation of the 
redshift of quasars is that it implies enormous 
luminosities of up to about 1040 W. Moreover, like 
Seyfert galaxies, the output of quasars can vary, on 
time-scales of as little as days or even hours. A source 
that can generate up to 1013 solar luminosities within a 
volume comparable to that of the solar system is truly 
awesome. Nevertheless, the consensus among 
astronomers is that quasars are at cosmological 
distances and that they are the active nuclei of galaxies1. 
There are many arguments in support of this view. First, 
the spectrum of a quasar can look so like the spectrum 
of a Seyfert galaxy that it is tempting to believe we are 
seeing extreme examples of Seyfert activity. To reverse 
the argument, if bright Seyferts were moved out to the 
distances of low-redshifts quasars, they would look like 
faint quasars. Secondly, the spectra of high-redshift 
quasars exhibit a “forest” of absorption lines with a 
range of redshifts lower than that of the quasar. These 
lines presumably arise in material, such as the halos of 
faint galaxies lying between the quasar and us. Lastly, 
modern techniques show the image – and the spectrum 
– of the host galaxy around many quasars. 

                                                            
1 This view is not universally held. Halton Arp, for example, argues 
that some quasars at least are physically associated with galaxies that 
have much lower redshifts. If this is the case, then some “new 
physics” is required to explain the redshifts of these quasars (cf. for 
example []). 

BL Lacertae objects (or BL Lacs) are named after the 
prototype of these sources, the radio source BL 
Lacertae. The brightness of these strange point-like 
sources can vary by a factor of several on the time-scale 
of days. In this respect, therefore, they are like an 
extreme form of Seyfert nuclei or quasar. Most BL 
Lacs, however, shows no emission lines in their spectra, 
which are of typical non-thermal form. Their distances 
are therefore difficult to estimate. Some BL Lacs, 
including BL Lac itself, have a faint evidence of 
material around the point source with the spectral 
characteristics of a galaxy. Its redshift is 0.07 
corresponding to a distance of 200 h-1 Mpc. 

2.4 Radio Galaxies 
The optical luminosities of galaxies range from about 
105 to 1010 Lsun. As might be expected from their ranges 
of size and mass, ellipticals span this whole range whilst 
spirals are confined roughly to the upper two decades. 
Since the solar luminosity is 3.9 1026 W, the total optical 
power radiated by galaxies ranges from 1032 to 1037 W.  

Compared with these values, most galaxies radiate very 
little power in the radio region of the spectrum, 
luminous spirals emitting up to about 1033 W, for 
example. There are, however, strong radio sources that, 
in some cases, emit more radio power than the brightest 
optical galaxies. Some of these radio sources are 
quasars but not all quasars are radio sources.  

Galaxy

Radio lobes
 

Figure 4-2. Cartoon of Cygnus A. 

The strongest radio sources are typified by Cygnus A 
(3C405), one of the most luminous. It has a radio output 
of some 1038 W. Figure 4-2 is a schematic 
representation of a low-resolution map of the radio 
emission from Cygnus A. It shows the typical structure 
of a “classical” double radio source, with two lobes of 
radio material on either side of a peculiar galaxy and 
about 50 kpc away from it. The core of the galaxy itself 
is a radio emitter and I shall return to this shortly. Over 
a wide range of frequencies, the flux density S(ν) from 
the lobes has a power-law dependence on ν: 

 ( )
α

ν
νν ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×=

o
oSS  (2.3) 

or 
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 ( ) constantloglog += νανS , (2.4) 

where So is the flux-density at the frequency νo and α is 
a constant called the spectral index2. Equation (2.4) 
shows that the spectrum is a straight line on a log-log 
plot of flux-density against frequency. 

3. Models of Active Galactic Nuclei 
3.1 The Source of Energy in AGN 
3.1.1 NUCLEAR OR GRAVITATIONAL POWER? 
We have to explain luminosities of at least 1039 W 
(1013 Lsun), generated within regions only 1013 m or less 
across and lasting for some 108 years. In other words, 
we need to account for the generation of about 1054 J of 
energy. [A related, but smaller, problem is the 
explanation of the 1052 J or so found in the lobes of 
radio galaxies.] Relativity tells us that, in order to 
produce a luminosity L, we need to convert mass into 
energy at the rate m&  given by 

 2c
L

dt
dmm −=≡& ; (3.1) 

the minus sign occurs because the mass is decreasing 
with time. From equation (3.1) we find that we need to 
convert about a tenth of a solar mass a year to produce 
1039 W. At first sight, this seems modest: a quasar 
would use up only 105 solar masses – perhaps 10-6 of the 
mass of a galaxy – in 108 years. What we have not taken 
into account, however, is the efficiency with which mass 
may be converted into energy. Let us define the 
efficiency η of an energy-generating process as the ratio 
of the energy E produced to the total rest-mass energy 
of the material generating the power: 

 2:
mc

E
=η . (3.2) 

Taking this efficiency into account, equation (3.1)
becomes 

 2
1

c
Lm

η
−=& . (3.3) 

Suppose we try to produce 1039 W of luminosity by as 
nuclear burning within stars3. The most efficient nuclear 

                                                            
2
Note that some authors define the spectral index by: 

 ( )
α

ν
νν

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

o
oSS . 

This is because most of the early observations were of sources whose 
spectral index was, by this definition, positive. The slope of log S(ν) 
against log ν can have either sign, however, and it is becoming more 
usual –  but not universal – to use the form I have chosen. 
3Even if we were to do this, we should still have to explain how to 
convert ordinary stellar radiation into relativistic particles needed to 
explain the observed spectra – see later. 

process is the conversion of hydrogen into helium, with 
η = 0.7%. The rate of star-formation – that is the rate m&  
at which interstellar material is converted into stars – is 
given by equation (3.3) as 

 ( )
.y M25s kg 106.1

s kg 
103007.0

10

1-
sun

1-24

1-
28

39

≈×=

××
≈− m&

 (3.4) 

This is a very high rate: in 108 y, a galaxy would 
consume some 109 Msun, or perhaps 0.1% of its mass. 
And, if we are to explain the variability of AGN, we 
need all this mass to be contained within a region not 
more than 1013 m across. The binding energy Ω of mass 
m contained within a region R in radius is given by 

 
R

Gm2
~Ω−  (3.5) 

and is about 1055 J for the above figures. This binding 
energy, which could in principle be released by 
gravitational contraction, is about an order of magnitude 
more than we are trying to produce by nuclear means! 
This suggests that the release of gravitational energy is 
the more likely source of power in AGN, although we 
need to look at the efficiency of this process as well. 

3.1.2 ACCRETION POWER 
Let us see if we can find a more efficient process. 
Consider the decrease in gravitational potential energy 
− ΔΩ of a body of mass m when it falls to within 
distance r of another body of mass M: 

 
r

GMm
=ΔΩ− . (3.6) 

If the body is in free-fall, however, this decrease in 
potential energy will simply go into increasing the 
kinetic energy of the body. We have to find a way of 
converting the potential energy into radiation. The usual 
model of this process is to consider the “body” to be 
gaseous material in an accretion disc and which is 
slowly spiralling into the central mass4. In order to 
spiral, the material must be slowly losing angular 
momentum and this is envisaged as arising from 
viscosity in the disc – mutual friction between the 
material successive turns of the spiral5. This viscosity 
heats the disc, converting the kinetic energy of the 
orbiting material into internal energy of the molecules 
and atoms of the disc. Finally, this heat is radiated away 
by photons. Let us look at this process more 
quantitatively. 

                                                            
4 This is almost certain to happen anyway because the in-falling 
material will have angular momentum with respect to the central 
object that it will have to get rid of. 
5It has to be said that no satisfactory viscous mechanism has been 
found! 
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Since the material is in quasi-stationary orbit about the 
central mass, the kinetic energy T(r) and potential 
energy Ω(r) of material at distance r from the centre 
must obey the virial theorem: 

 ( ) ( ) 02 =Ω+ rrT . (3.7) 

The total energy of the system – that is the sum of the 
kinetic energy, the potential energy and any energy R(r) 
that has been radiated by the time the material has 
reached r – must be conserved, so that 

 ( ) ( ) ( ) 0=+Ω+ rRrrT , (3.8) 

where I have taken the potential energy of the material 
at infinite distance from the central mass to be zero. 
Eliminating T from equations (3.7) and (3.8), we get 

 
( ) ( )

( ) ( ) .
2
1

2
1

;
2
1

2
1

r
GMmrrT

r
GMmrrR

=Ω−=

=Ω−=
 (3.9) 

Only half the potential energy is, therefore, available to 
be converted into radiation. 
It appears at first sight as if we could extract infinite 
energy from this process by allowing r to go to zero. 
There is, however, a natural limit to how close one can 
approach to an object of mass M. General relativity tells 
us that, if a body becomes smaller that its Schwarzschild 
radius rS, given by 

 
2S

2
:

c
GM

r = , (3.10) 

it will collapse to form a black hole from which nothing 
can escape. Putting in numbers, we get 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×= −

sun

9
S 1076.2hourslight 

M
Mr . (3.11) 

Hence the Schwarzschild radius represents an absolute 
minimum to the value of r occurring in equation (3.9)
and then only if the body of mass M is, indeed, a black 
hole. Because we get maximum efficiency from a black 
hole, let us shall assume that this is the case. General 
relativity also says that there is no stable orbit closer to 
a black hole than 3rS. Material closer than this plunges 
straight into the hole without having time to get rid of 
its remaining gravitational energy6. In practice, 
therefore, the maximum radiant energy Rmax that I can 
extract from letting matter of mass m fall into a black 
hole is given by 

 2

s
max 12

1
32

1 mc
r

GMmR ==  (3.12) 

                                                            
6This is a slight over-simplification but it serves our purpose. 

with a corresponding maximum luminosity L given by 

 2
max 12

1 cm
dt
dEL &=≡ . (3.13) 

The minimum mass-inflow rate m&  needed to produce a 
luminosity L is therefore given by 

 212
c
Lm =&  (3.14) 

Comparing equation (3.14) with equation (3.3), we see 
that the efficiency of gravitational accretion is 1/12 or 
about 8%, which is an order of magnitude more efficient 
than nuclear processes. This means that only about 
2 solar masses a year are needed to fuel the observed 
luminosities. Actually, we can expect the efficiency to 
be even higher than this. I have dealt only with a non-
rotating black hole. In practice, any black hole formed 
from the collapse of material to the centre of a galaxy is 
likely to be rotating because the material from which it 
formed would have had angular momentum about the 
centre of the galaxy. The maximum efficiency of 
extracting potential energy from a rotating black hole 
can be shown to be about 40%. 

Note that the luminosity predicted by this model 
depends only on the mass-infall rate and is independent 
of the mass of the black hole itself. The observed 
variability, however, limits the size of the region and 
hence the Schwarzschild radius. Variability on the time 
scale of an hour demands a black hole of at least 
109 Msun. 
3.1.3 THE EDDINGTON LIMIT 

It is easy to show that there is a limiting “accretion-
luminosity” for a body of a given mass. Out-flowing 
photons exert a force on the in-flowing matter and, if 
the flux of photons is large enough, this force will 
exceed the gravitational attraction of the central mass. 
The situation is illustrated in Figure 4-3.  

r

Fin

Fout

electron
proton

 
Figure 4-3. Origin of the Eddington Limit 

The details are as follows. The general relation between 
the energy E and momentum p~  of a relativistic particle 
of mass m is given by 

 42222 ~ cmcpE += . (3.15) 
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Since photons are massless, each carries momentum p~  
given by 

 c
Ep =~  (3.16) 

and the total momentum P~  carried per unit time by all 
the photons emitted by a source of luminosity L is given 
by 

 
c
LP =

~ . (3.17) 

The pressure pγ exerted by these photons is, by 
definition, the momentum flux, that is the rate flow of 
momentum per unit area of surface perpendicular to the 
flow of radiation. At a distance r from the source, 
therefore, 

 ( ) c
r

Lrp ⎟
⎠

⎞
⎜
⎝

⎛= 24π
γ . (3.18) 

This pressure acts upon the Thomson cross-sections σ of 
the (ionised) in-falling particles, mainly protons and 
electrons. For a particle of charge e and mass m, 

 ( )
2

2
o

2

43
2, ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

mc
eme

πε
σ  (3.19) 

It is clear from equation (3.19) that, because of the ratio 
of their masses, the Thomson cross-section of electrons 
is some six orders of magnitude greater than that of 
protons. The main outward force Fout(r) is therefore that 
exerted by the photons on the electrons and is given by 

 ( ) ( )
cr

L
rprF 2

T
Tout 4π

σ
σγ =×= , (3.20) 

where σT is the Thomson cross-section of the electron. 
Because the electrons in the plasma are coupled to the 
protons via electromagnetic forces, the outward force 
given by equation (3.20) is transferred to the protons as 
well. 

The inward gravitational force Fin(r) on a particle of 
mass m is given as usual by 

 ( ) 2in
r

GMmrF = . (3.21) 

Equation (3.21) shows that the gravitational force on the 
proton is three orders of magnitude higher than that on 
the electron so that the main inward force is given by 

 ( ) 2
P

in r
GMm

rF = , (3.22) 

where mp is the proton’s mass. Again, though, this force 
is transferred to the electrons electromagnetically. 

For accretion to take place, we need inward force given 
by equation (3.22) to be greater than the outward force 
given by equation (3.20): 

 
cr

L
r

GMm
2
T

2
P

4π
σ

≥ . (3.23) 

This means that, if a source is to derive its luminosity 
from accretion, its luminosity L must be less than the 
Eddington luminosity, LEddington: 

 
T

p
Eddington 4:

σ
π

cGMm
LL =≤ . (3.24) 

Putting in numbers, we get 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

sun

31
Eddington 1026.1W

M
ML . (3.25) 

Relation (3.24) can be re-arranged to give a lower limit 
on the mass of a source with a given observed velocity 
L: 

 
cGm

L
MM

p

T
min 4

1 σ
π

=≥ . (3.26) 

Again putting in numbers, we get 

 ( ) ( )W109.7M 32
sunmin LM −×= . (3.27) 

Equation (3.27) shows that we need a black hole of at 
least 108 solar masses to give an accretion luminosity of 
1039 W. 

3.2 Characteristic Temperatures 
Let us make some rough estimates of the temperatures 
involved in accretion radiation. First, consider that 
coming from the inner edge of the accretion disc at 
radius rmin. If we assume that the radiation is blackbody 
with effective temperature Teff, then the luminosity L is 
given by 

 4
eff

2
min~ TrL σ , (3.28) 

where σ is the Stefan-Boltzmann constant. If we assume 
that the disc is radiating at the Eddington limit and that 
rmin is the radius of the last stable orbit, then we have 
from equations (3.28), (3.24) and (3.10), 

 
4/1

T

5
p

eff 9
~

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

σσ
π

GM
cm

T . (3.29) 

Putting in numbers, we have 

 
4/1

sun

7
eff 104~

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

M
MT . (3.30) 
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For a 108 solar mass black hole, we find an effective 
temperature of about 105 K. Using the relation 

 kThc ~
λ

, (3.31) 

we see that this radiation peaks at around 150 nm, or in 
the UV to soft X-ray region of the spectrum where the 
big blue bump lies. Moreover, from equation (3.10), we 
see that the size of this region is about a light-hour 
across, so we should not be surprised at variations on 
the time-scale of hours. 

On the other hand, think of protons that fall straight 
from “infinity” to rmin and are then thermalised. The 
gain in ΔT in kinetic energy of each proton is given, 
from equation (3.9), by 

 2
p

S

p

6
1

3
cm

r
GMm

T ==Δ . (3.32) 

If this energy is now thermalised to a temperature Ttherm, 
we have 

 therm2
3 kTT =Δ  (3.33) 

so that 

 
k
cm

T
2

p
therm 9

1
=  (3.34) 

or, numerically 

 K 102.1 12
therm ×=T .7 (3.35) 

From equation (3.31), we find that the energy of the 
photons corresponding to this temperature is about 
100 MeV, many times the energy (1 MeV) required for 
the production of electron-positron pairs. From this, we 
may tentatively conclude that: 

• the big blue bump arises from optically thick thermal 
radiation from the inner parts of the accretion disc; 

• the X-rays originate from a region of electron-
positron plasma. 

3.3 Accretion Discs 
3.3.1 STRUCTURE OF THE DISC 

Figure 4-4 shows schematically an accretion disc of 
density ρ(r) encircling a black hole and though which 
mass is spiralling down at a rate m& 8. The upper part of 
the figure shows the plan view and the lower part a 

                                                            
7 Note that these results are independent of the mass of the black hole. 
8If the disc is to be in a steady state, that is of there is to be no build up 
of matter anywhere in it, the mass infall rate must be independent of 
radius. 

section. Consider a thin annulus of the disc of width δr 
at r. Define the surface density σ(r) of the disc at r by 

 ( ) ( )
( )

( )
rdrr

rh

rh

′′= ∫
+

−

2/

2/

: ρσ , (3.36) 

where h(r) is the thickness of the disc at r.  

r r + δr

h(r)

Ω(r)

 
Figure 4-4. Accretion disc. 

 

3.3.2 CONSERVATION OF MASS 

Consider an annulus of width δr at r. The rate of build-
up of mass ( ) trm ∂∂  within this annulus is given by 

 ( ) ( )[ ]rrr
tt

rm σδπ ×
∂
∂

≡
∂

∂ 2 . (3.37) 

This build-up must be provided by the net flow of 
material netm&  into the annulus: 

 ( )
outinnet mmm

t
rm

&&& −==
∂

∂ , (3.38) 

where inm&  is the rate of flow of mass into the annulus 
from the outer regions and outm&  is rate of flow of mass  
from the annulus into the inner regions. Now 

 ( ) ( ) ( )rvrrrmm r××−=≡ σπ2out && . (3.39) 

and 

 
( )

( ) ( ) ( ),2
in

rrvrrrr
rrmm

r δδσδπ
δ

+++−=
+≡ &&

 (3.40) 

where vr(r) is the radial component of velocity of the 
material in the disc (positive in the direction of 
increasing r). Hence,  

 ( ) ( )[ ]rvrr
r

rm rσπδ
∂
∂

×−= 2net&  (3.41) 

to first order in δr. From equations (3.37), (3.38) and 
(3.41), we have 
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 ( )[ ] ( ) ( )[ ]rvrr
r

rr
t

rr rσπδσδπ
∂
∂

×−=
∂
∂ 22  (3.42) 

or 

 ( ) ( ) ( )[ ] 01
=

∂
∂

+
∂

∂ rvrr
rrt

r
rσσ . (3.43) 

In the steady state, ( ) tr ∂∂σ  must be zero so that 

 ( ) ( ) constant=rvrr rσ . (3.44) 

Comparing equations (3.44) and (3.39), we see that 

 ( ) ( ) ( ) mrvrrrm r && ==××−= constant2 σπ , (3.45) 

independent of r. That is, the radial mass flow is 
independent of radius, as we expected. 

3.3.3 CONSERVATION OF ANGULAR MOMENTUM 

Now consider the transfer of angular momentum across 
the annulus. The rate ( )rL flow mass

&  at which clockwise 
angular momentum is flowing out to the inner regions 
of the disc is given by 

 ( ) ( ) ( ),flow mass rvrrmrL φ××= &&  (3.46) 

where vφ(r) is the azimuthal velocity of the material at r. 
taken to be positive clockwise. Using similar arguments 
to those above, we find that the rate of build-up 

( ) trL ∂∂ of angular momentum in the annulus, resulting 
from the mass flow, is given by 

 
( ) ( )[ ] rrrv

r
m

t
rL

δφ∂
∂

=
∂

∂
&flow mass , (3.47) 

where I have used the constancy of mass-flow, equation 
(3.45) 
There is, however, another source of angular 
momentum – the action of any torque Γ(r) acting in the 
disc: I shall derive an expression for Γ(r) later. If we 
take positive Γ(r) to be clockwise acting on material 
interior to r, then the net clockwise torque δ Γ(r) acting 
on the annulus is given by 

 
( ) ( ) ( )

( ) r
r
r

rrrr

δ

δδ

∂
Γ∂

≈

Γ−+Γ=Γ
 (3.48) 

so that, from equations (3.47) and (3.48) 

 

( ) ( ) ( )

( )[ ] ( )
r
rrrv

r
m

r
r

t
rL

t
rL

∂
Γ∂

+
∂
∂

=

∂
Γ∂

+
∂

∂
≡

∂
∂

φ&

flow mass

. (3.49) 

In the steady state, ( ) trL ∂∂  must be zero so 

 ( )[ ] ( )
r
rrrv

r
m

∂
Γ∂

−=
∂
∂

φ& . (3.50) 

If we integrate equation (3.50) between rlso, the radius of 
the last stable orbit, and r, we get 

 ( )[ ] ( )
⎮⌡
⌠ ′

′∂
′Γ∂

−=⎮⌡
⌠ ′′′

′∂
∂

r

r

r

r

rd
r
rrdrvr

r
m

lsolso

φ& , (3.51) 

or 

 
( ) ( )[ ] ( ) ( )[ ]

( ),
lsolsolso

r

rrrvrrrvm

Γ−=

Γ−Γ−=− φφ&
 (3.52) 

where I have assumed that the torque at the last stable 
orbit is zero, because there is nothing for it to act on. 
3.3.4 CONSERVATION OF ENERGY 
Finally, let us consider the conservation of energy. We 
see that the rate ( )rT&  at which kinetic energy is flowing 
out of the annulus into the inner regions of the disc is 
given by 

 ( ) ( )rvmrT 2

2
1

φ×= && . (3.53) 

Proceeding along similar lines to the above, we find that  
the net rate of flow ( ) trT ∂∂  of kinetic energy into the 
annulus is given by 

 ( ) ( )[ ] rrv
r

m
t
rT δφ

2

2
1

∂
∂

=
∂

∂
& . (3.54) 

We must also take account of the flow of potential 
energy V. The rate ( )rV& at which potential energy is 
flowing out of the annulus to inner regions is given by 

 
( ) ( ) ( )

,

2

r
mGM

r
GMrvrrrV r

&

&

−=

⎟
⎠
⎞

⎜
⎝
⎛−×−= σπ

 (3.55) 

where I have used equation (3.45) The net rate of 
increase ( ) trV ∂∂ in the annulus is therefore given by 

 ( ) r
rr

mGM
t
rV δ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

−=
∂

∂ 1
& . (3.56) 

Finally, the differential torque does work on the 
annulus. This net rate of working ( ) trW ∂∂  is given by 
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( ) ( ) ( ) ( ) ( )

( ) ( )[ ] ( ) ( )

( )
( ) ( ) ,1 2lsolso rrv
rv

rv
r

r
r

m

r
r

rv
r

r
rrr

r

rrrrrr
t
rW

δ

δδ

δδ

φ
φ

φ

φ
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⎪
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⎪
⎨
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

∂
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−=

⎥
⎦

⎤
⎢
⎣

⎡
Γ

∂
∂

=ΩΓ
∂
∂

≈

ΩΓ−+Ω+Γ=
∂

∂

&

 (3.57) 

where Ω(r) is the angular velocity of the material at r 
and where I have used the momentum conservation 
equation (3.52) to substitute for Γ(r). Hence, the overall 
rate ( ) trE ∂∂  of build-up of total energy in the annulus 
is given by 

( ) ( ) ( ) ( )

( )

( )
( ) ( )

( )
( ) ( )

r

r
GM

rv
rv

rv
r

r

r
m

r
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r
m

t
rW

t
rV

t
rT

t
rE

δ

δ

φ
φ

φ

φ
φ

φ

φ

⎪
⎪
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⎪
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∂
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∂
+

∂
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=
∂

∂

2lsolso
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2

2
1

1

2
1

&

& . (3.58) 

If the material is in almost circular Keplerian orbits 
about the black hole (vr << vφ) , we have 

 
2

2

r
GM

r
v

=φ . (3.59) 

Substituting from equation (3.59) into equation (3.58), 
we get 

( ) ( ) rrv
r

r
r

m
t
rE δφ

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
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⎥
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⎤
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⎢
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⎝
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∂ 2
2/1

lso

2
3

& . (3.60) 

Let the surface energy density of the disc be U(r). Then 
the total surface energy E(r) of the annulus is given by 

 ( ) ( )rUrrrE ×= δπ2 , (3.61) 

From equations (3.60) and (3.61), we get 
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 (3.62) 

If the disc is in thermal equilibrium, then this energy 
must be radiated away. The luminosity per unit area l(r) 
of the disc must therefore be given by 

 ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∂
∂

=
2/1

lso
3 1

8
3

2
1

r
r

r
mGM

t
rUrl

&

π
. (3.63) 

where the extra factor of a half appears because energy 
is radiated by the disc has two sides9. Note that the 
luminosity tends to zero as we approach the last stable 
orbit. 

3.3.5 VISCOSITY IN THE  DISC 
It is interesting to note that the above result is entirely 
independent of the mechanism responsible for the 
torque Γ(r) acting in the disc. Such a torque must exist 
in order to conserve angular momentum, as shown by 
equation (3.52) but its nature is unimportant as far as the 
luminosity of the disc is concerned. Let us, though, 
investigate a possible mechanism. 
Suppose the material in the disc has some chaotic 
motion with mean-squared velocity <v> and mean-free-
path λ, superimposed on its circular and radial motions. 
Consider a blob of material A in Figure 4-5, moving 
from the initial position shown to a new position at 
smaller radius. Then the mass-transfer rate chaosm&  
produced by such movement is given by 

 ( ) vrrm ××= σπ2chaos&  (3.64) 

On average, such a blob will transfer angular 
momentum corresponding to material at r + λ across the 
surface of at radius r. Similarly, blob B will transfer 
angular momentum corresponding to material at r - λ 
across the same surface. This net transfer of angular 
momentum will exert a torque on the disc at r. 

r

r + λr - λ

A

B

 
Figure 4-5. Origin of Viscosity. 

Material at r has circular velocity rΩ(r). If the disc 
rotated as a rigid body, so that Ω(r) were constant, then 
the material at (r + λ/2) would have circular velocity 
(r + λ/2)Ω(r). In fact, the material at (r + λ/2), where A 
originates, has circular velocity (r + λ/2)Ω(r + λ/2). The 

                                                            
9 I am assuming that the disc is optically thick. 
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relative velocity of material at (r + λ/2) with respect to 
that at r is therefore given by 
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 (3.65) 

where I have used a Taylor expansion and kept only 
first-order terms in λ.  The rate of transfer of angular 
momentum ( )rLin

&  across r by material such as A is 
therefore given by 

 ( ) ( )⎥⎦
⎤

⎢⎣
⎡ Ω′××= rrrmrL λ

2
1

chaosin && . (3.66) 

Similarly, the rate of transfer of angular momentum 
( )rLout

&  across r by material such as B is given by 

 ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ Ω′−××= rrrmrL λ

2
1

chaosout && . (3.67) 

The net rate of transfer of angular momentum inward 
( )rL&  at r is therefore given by 

 

( ) ( ) ( )
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( ) ( ),2 3

chaos
2
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Ω′=

Ω′=

−=

λσπ

λ &

&&&

 (3.68) 

where I have used equation (3.64). But the net rate of 
transfer of angular momentum across a surface is equal 
to the torque exerted on that surface. The torque Γ(r) 
exerted, in the direction of rotation, by the outer 
material on the inner material at r is therefore given by 

 ( ) ( ) ( )rvrrr Ω′=Γ μσπ 32 , (3.69) 

where 

 ( ) vr λμ =:  (3.70) 

is the coefficient of viscosity. Note that, if Ω(r) is 
actually constant, independent of r, then Γ(r) is zero: we 
only get a torque of there is shear motion in the disc. 
3.3.6 SPECTRUM RADIATED BY DISC 

Let us assume that the disc radiates as a black body so 
that 

 ( ) ( )rTrl 4σ= , (3.71) 

where T(r) is the temperature of the disc at r and σ is the 
Stefan-Boltzmann constant. From equations (3.71) and 
(3.63), we have 
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. (3.72) 

The spectrum I(ν,T) of black-body radiation at 
temperature T is given by 

 ( )
1

12, 2

3

−
= kThec

hTI ν
νν  (3.73) 

so that the spectral luminosity l(ν,r) per unit area of the 
accretion disc is given by10 

 ( ) ( ) 1
12, 2

3

−
= rkThec

hrl ν
νπν , (3.74) 

where T(r) is given by equation (3.72). The total 
spectral luminosity L(ν) of the disc is therefore given by 
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, (3.75) 

where rmax is the outer radius of the disc and the first 
factor of two recognises that the disc has two faces.  

Although the integration of equation (4.26) has to be 
done numerically, we can get a good idea of what this 
spectrum looks like by making some approximations. At 
low frequencies, we have 

 .1;
1

1
<<≈

− kT
h

h
kT

e kTh
ν

νν  (3.76) 

This is the Rayleigh-Jeans approximation. The lowest 
temperature in the disc occurs at rmax. For frequencies 
such that 

 ( )maxrkTh <<ν , (3.77) 

therefore, we have 

                                                            
10 Note that a black surface radiates into π steradians. 
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where, J(rlso,rmax) is the integral in the third line of 
(3.78). At low frequencies, therefore, the spectrum is a 
power law. 
At high frequencies, we have 
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Differentiation of equation (3.72) shows that the 
maximum temperature occurs at rT max given by 
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For frequencies such that 

 ( )maxTrkTh >>ν , (3.81) 

we have 
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where, in the second approximation, I have replaced the 
exponential term with its maximum value and, in the 
third, have assumed that rmax >> rlso. At high 
frequencies, the spectrum falls off exponentially with 
frequency. 

What about in between? The blackbody function (3.73)
peaks at frequency ν given by 

 
h

kT~ν  (3.83) 

and the total luminosity per unit area is σT 4 equation 
(3.71). We can approximate l(ν,T) very crudely as 
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δ(x) is the Dirac delta function. Substituting from 
equation (3.84) into the first line of equation (3.75), we 
get 

( ) ( ) ( )

( )⎮
⌡

⌠
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛=

⎮
⌡

⌠

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −=

max

lso

max

lso

4

4

8
4

4

r

r

r

r

rdr
h

kTrTmGM

rdr
h

rkTrTL

νδ
πσ

πσ

νδσπν

&

 (3.85) 

The integral could be evaluated by changing the 
variable of integration from r to T using equation (3.72). 
Unfortunately, the term 

 
4/12/1

lso1
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛−
r

r
 

complicates this considerable. Since we are only 
looking for an approximate behaviour, I shall ignore this 
term. Then 
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so that L(ν) is proportional to ν 1/3 in the intermediate 
region. The overall spectrum is sketched in Figure 4.6. 

How does this fit with observation? It is not a bad 
representation of the “blue bump” in AGN spectra 
although ν 0 would be better than ν 1/3 Nevertheless, 
especially in view of the approximations involved, it is 
not a bad attempt. 

 
ln Lν

ln ν

ν2

ν1/3
e-hν/kT

 
Figure 4.6. Overall spectrum of accretion disc. 
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4. Models of Radio Sources 
4.1 Synchrotron  Radiation 
4.1.1 THE FREQUENCY OF SYNCHROTRON RADIATION 

A power-law spectrum of the form given in equation 
(2.3) is consistent with the synchrotron radiation 
emitted by a collection of charged particles, of various 
energies, moving with relativistic velocities in a 
magnetic field. Synchrotron emission is also consistent 
with the observed polarisation of the radiation. I shall 
give a simplified treatment of such radiation. 

An electron moving perpendicularly to a magnetic field 
of induction B describes a circular orbit with the 
cyclotron frequency νc given by 

 
e
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m
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π
ν = , (4.1) 

where me is the rest-mass of the electron. Notice that νc 
is independent of the velocity (or energy) of the 
electron. Because circular motion involves acceleration, 
the electron will emit electromagnetic radiation with 
frequency νc. If the electron is moving relativistically 
with velocity u however, it emits radiation over a broad 
band of frequencies peaked at ν given by 
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where the Lorentz factor γ is given by 

 

.:

;
1

1

1

1
222

c
u

cu

=

−
=

−
=

β

β
γ

 (4.3) 

Using the fact that the energy E of the relativistic 
electron is given by 

 2
ecmE γ= , (4.4) 

we get 
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where 
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Putting in numerical values, we get 

 ( ) ( ) ( )JT101.2Hz 236 EB×=ν . (4.7) 

 

4.1.2 THE POWER EMITTED BY A RELATIVISTIC 
ELECTRON 
The power P(E) radiated by an electron of energy E is 
given by 
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where εo is the permittivity of free space and where the 
second line come from equation (3.39).  

In any collection if electrons in space, there must be an 
equal number of protons to preserve charge neutrality, 
and these protons will also radiate in a magnetic field. 
Equation (4.8) shows, however, that the power radiated 
by a particle in inversely proportional to the fourth 
power of its mass. Even if the protons are moving 
relativistically with the same energy as the electrons, 
therefore, the power they radiate will be relatively 
negligible because they are some two thousand times 
more massive11. 
In all the cases we shall deal with, the electrons are 
ultra-relativistic so that 

 1≈β . (4.9) 

We can therefore re-write equation (3.63) as 

 ( ) 22 EbBEP ≈ , (4.10) 

where 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 54

e

4

o6
1

cm
eb

πε
. (4.11) 

Putting in numerical values, we get 

 ( ) ( ) ( )JT1042W 2212 EB.P ×= . (4.12) 

4.1.3 THE SYNCHROTRON SPECTRUM 

Suppose that the number N(E)dE of relativistic electrons 
with energies between E and E + dE is given by 
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 (4.13) 

Each electron of energy E radiates power P(E) so that 
the luminosity dL(E) of the electrons with energies in 
the range E to E + dE is given by 

                                                            
11 Equation (3.72) shows that they will also radiate at much lower 
frequencies. 
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where I have used equation (3.73). We can use equation 
(3.71) to eliminate the energy E from this equation: 
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This spectrum has the same form as that given in 
equation (2.3) provided that 

 
2

1 p−
=α . (4.16) 

Local cosmic rays have an energy spectrum of the form 
(4.13) with p ~ 2.5, which would give α ~ −0.75. This is 
remarkably close to the commonly observed value of 
−0.7. We may therefore feel that we have “explained” in 
terms of “cosmic rays” in the radio sources. We have 
yet to explain, though, why p for cosmic rays should 
have this value! I shall return to this point later. 

4.1.4 LIFETIME OF RELATIVISTIC ELECTRONS 

Because the electron is radiating power P(E), it is losing 
energy at this rate so 

 ( )EP
dt
dE

=− . (4.17) 

Substituting for P(E) from equation (3.58) we find 

 22EbB
dt
dE

=− . (4.18) 

Hence, an electron with energy E loses energy ΔE in a 
time Δt given by 

 22EbB
Et Δ

=Δ . (4.19) 

Crudely, we can put ΔE equal to E and obtain a 
characteristic time τ(E) for an electron to lose its 
energy, where 

 ( )
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=τ . (4.20) 

Notice that the more energetic the electron, the more 
rapidly it loses its energy. τ(E) can be considered as the 
lifetime for radiation from an electron of energy E. 
[More formally, we can integrate equation (4.18):  
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where Ei is the initial velocity of the electron at t = 0. 
Carrying out the integration on the left-hand side, we 
find that 
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Even if the electron were to start with infinite energy, it 
would have energy E after a finite time t(E) given by 

 ( )
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= . (4.23)] 

We can use equation (3.71) to eliminate the energy E 
from (3.41) and obtain the characteristic lifetime τ(ν) of 
an electron radiating at frequency ν: 
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Substituting numerical values, we get 

 ( ) ( ) ( ) 2/12/35 HzT106s −−×= ντ B . (4.25) 

 

4.2 Models of the Radio Lobes 
4.2.1 THE ENERGY IN THE LOBES 

In this section, I shall assume that all electrons have the 
same energy Eo. That is, I shall replace the true energy 
spectrum given by equation (3.59) by the simplified 
spectrum 

 ( ) ( )dEEENdEEN oo −= δ . (4.26) 

This will make treatment much easier without changing 
the overall conclusions. Suppose the source has total 
luminosity L. From equations (4.26) and (3.78), we have 
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The total energy Eelectrons contained in the electrons is 
given by 
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From equations (4.8) and (4.13) we get 
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where I have used equation (4.5) to eliminate Eo. Putting 
numerical values into, we obtain 

 ( ) ( ) ( ) ( ) 2/1
o

2/35
electrons HzTW106J −−−×= νBLE .(4.30) 

Equation (3.41) takes account only of the energy in the 
electrons. If the material is to be electrically neutral, the 
electrons must be accompanied by an equal number of 
protons, which will also have energy. To allow for this, 
let us say that the energy Eprotons in the protons is related 
to Eelectrons by 

 electronsprotons KEE = . (4.31) 

The total energy Eparticles in particles is then given by 
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We have no way of determining K directly. We may 
have a clue in the cosmic ray flux measured near the 
Earth in which the protons carry 100 times as mush 
energy as the electrons. In the absence of better 
information, therefore, let us take K to be 100. Then it is 
easy to show that the total particle energy in the radio 
lobes of Cygnus A, for example, is equivalent to the 
rest-mass of about 105 Msun. 

A magnetic field of induction B has an energy ufield 
associated with it, given by 
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2

field 2μ
Bu = , (4.33) 

where μo is the permeability of free space. The total 
energy Efield contained in the field is therefore given by 
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2

field 2μ
BVE = , (4.34) 

where V is the volume of the emitting region. 
Numerically, we have 

 ( ) ( ) ( )23
field kpcJ TBVTBDE ×= , (4.35) 

The total energy Etotal in the lobes needed to give the 
observed luminosity is therefore given, from equations 
(3.72) and (4.34), by 
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Unfortunately it is rarely possible to measure the 
magnetic field independently. How, therefore, are we to 
estimate the total energy Etotal? The first term in 
equation (4.36) is a decreasing function of the magnetic 
induction B whereas the second term is an increasing 
function of B. There must therefore be a minimum in 
the total energy needed to give an observed luminosity 
L. This is shown in Figure 4.7, which plots the 
logarithm of the particle, field and total energies against 
the logarithm of the induction.  

 

Efield Eparticles

Etotal

log B

log E

 
Figure 4.7. Variation of particle (dashed curve), field 
(dotted curve) and total (solid curve)energies with B. 

It is usually assumed that the magnetic field has the 
value that minimises the total energy for no better 
reason than that, even with this assumption, the total 
energies required – of around 1054 J – are  
embarrassingly high! 

To find the minimum, we differentiate Etotal with respect 
to B and set the result equal to zero to get Bmin. We find 
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The first term in round brackets depends solely on 
fundamental constants. The terms in square brackets are 
estimated or observed quantities. 

Putting in numerical values, we get 
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It is easy to show, from equations (4.32) and (4.35) that 
the magnetic induction Bmin, makes the energy in the 
particles nearly equal to that in the magnetic field: 
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Some people prefer to start with the assumption that the 
energy is equally divided between the particles and the 
field – the so-called equipartition of energy – rather than 
to assume that the energy is minimised. From equation 
(4.39), it is obviously immaterial which assumption is 
made. 

From equations (3.52) and (3.75), we have for the 
minimum total energy Emin, 
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4.2.2 THE SUPPLY OF ENERGY TO THE LOBES 

Perhaps the most natural assumption, given their 
disposition on either side of the galaxy, is that the radio 
lobes were ejected as entities from the galaxy and have 
been travelling independently since through 
intergalactic space. There is certainly nothing in the 
vicinity of the lobes themselves that could be 
responsible for them. The lobes are tens of kiloparsecs – 
some 50 kpc or 150 000 light years in the case of 
Cygnus A, for example – or more away from the galaxy. 
As we shall see later, they are moving out into the 
intergalactic medium at no more than a tenth of the 
velocity of light so that they would have taken ~106 
years to get there. Yet it can be shown from equation 
(4.25) that the lifetime of an electron in a radio lobe is 
typically ~105 years. The electrons would therefore have 
lost all their energy in the time taken by the lobes to get 
to their present position. 

In fact, the problem is far worse than appears at first 
sight! If the lobes had been ejected from the central 
galaxy, it is reasonable to assume that they had come 
from the nucleus of the galaxy –  where the activity is 
seen – rather than from the benign elliptical galaxy 
surrounding the core. But the variability – on the time-
scale of a year or less – of the activity in the nucleus 
shows that it must be less that a few parsecs in size. Let 
us take an upper limit of 10 parsecs. The radio lobes 
themselves, however are of the order of several 
kiloparsecs. Hence, the lobes must have undergone 
expansion by a factor of around 1000 in their passage 
from the nucleus of the galaxy. Let us denote the factor 
of expansion by f. The we can say that the lobe expands 
form an initial size d to a final size d' given by fd. 
Symbolically: 

 fddd =′→ . (4.41) 

Now the lobes contain plasma – highly ionised matter –  
and the magnetic field B is therefore “frozen” into the 

matter12. As the lobes expand, therefore, the field lines 
get further apart and the field itself decreases. 
Quantitatively, the flux threading the lobe must be 
conserved. Since the size of the lobe is d, the flux Φ 
threading it is given by 

 constant~ 22 =′′=Φ dBBd , (4.42) 

where B’ is the final value of the induction. From 
equations (4.41) and (4.42), therefore, 

 BfB 2−=′ . (4.43) 

The total energy E’field within the field after expansion is 
given by 
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where V' is the expanded volume of the lobes and Efield 
is the total field energy before expansion. 

What about the electrons? The radius a of the orbit of a 
highly-relativistic electron of energy E in the magnetic 
field B is given by 

 
eBc
Ea =  (4.45) 

so that the flux Φa threading the electron's orbit is given 
by 
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For changes that are slow compared with the time to 
complete one orbit – that is, for adiabatic changes – Φa 
must be constant so that 
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or, using equation (4.18), 

 EfE 1−=′ . (4.48) 

If no new electrons are added to the plasma, the total 
number N of electrons contained in the lobes must be 
constant so that 
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12Strictly, the conductivity of the plasma would have to be infinite for 
the field to be completely tied to the matter, but the approximation is 
good. 
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The field and particle energies therefore scale in the 
same way with the expansion factor f, preserving the 
“equipartition” between the particle and field energies:  

Using equation (3.84) for the power radiated by an 
individual electron, we have for the total power P’total 
radiated by the lobes after expansion 

 
,total

62224

22
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PfEfBNbf

EBNbP
−−− ==

′′=′
 (4.50) 

where Ptotal is the total power radiated before the 
expansion. Equation (4.50) says that the power radiated 
by the lobes decreases by a factor f 6 during the 
expansion. As we have seen, f is of order 103 so the 
power decreases by eighteen orders of magnitude during 
the expansion! If the ejection hypothesis were true, 
therefore, one would expect to find that sources with 
small separation between the lobes and the central 
galaxy were on average more powerful than the larger 
sources. On the contrary, it is the larger sources that 
are, on the whole, more powerful. We must therefore 
seek another explanation of the origin of the radio lobes. 

The accepted explanation is that there is a beam or jet of 
particles – emanating from the central galaxy – which 
feeds the lobes with fresh relativistic electrons. As we 
have seen, there is direct evidence for such beams in 
radio sources. 

4.2.3 MOTION OF THE JETS AND LOBES 

4.2.3.1 Superluminal Velocity in Jets 

Figure 4.8 shows knots or blobs of material in a jet 
leaving a central galaxy with velocity V. By taking radio 
measurements – separated by months or years – of these 
blobs, we can measure their proper motion μ, that is 
their angular velocity on the sky.  If we can establish the 
distance ro the galaxy, we can calculate the rate of 
change p& of the projected distance p: 

 μorp =& . (4.51) 
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Figure 4.8. Illustration of superluminal motion. 

As we have already seen, p&  is found to be greater than 
the velocity of light c in several sources. I shall now 
show that this an optical illusion and does not imply that 
the blobs are violating the tenets of relativity. Suppose 

the furthest blob was ejected from the galaxy at time te. 
The radiation emitted by the blob at this time is received 
at the Earth at time tr given by 

 
c
o

er
r

tt += , (4.52) 

where ro is the distance of the galaxy from Earth13. At 
some time te + Δte, the blob is in the position shown in 
the diagram and is distant ro - Δr from the Earth. In this 
position, it emits radiation which is received on Earth at 
time tr + Δtr where 

 ( ) ( )
c

rr
tttt

Δ−
+Δ+=Δ+ o

eerr . (4.53) 

From equations (4.52) and (4.53), we have 

 
c
rtt Δ

−Δ=Δ er . (4.54) 

Note that the time between the reception of the two 
signals is less than the time between emission because 
the light has less far to travel: it is this difference which 
gives rise to the optical illusion. 

In the time Δtr, the blob is observed to have moved a 
distance Δp perpendicular to the line-of-sight where, 
from Figure 4.8, 

 θθ sinsin e ×Δ=×Δ=Δ tVlp , (4.55) 

where V is the velocity of the blob. From equations 
(4.54) and (4.55), we have 
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But it is clear from the figure that 

 θθ coscos e ×Δ=×Δ=Δ tVlr  (4.57) 

so that 
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where 

 
c
V

=:β  (4.59) 

is the velocity of the blob expressed as a fraction of the 
velocity of light. Obviously, what we need if we are to 

                                                            
13For simplicity, I assume that the galaxy is at rest with respect to the 
Earth. This assumption does not affect the conclusion. 
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observe a blob apparently moving as fast as, or faster 
than, light is to have 

 1
cos1

sin
≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− θβ

θβ . (4.60) 

We can re-arrange equation (4.60) to give 

 
θθ

β
cossin

1
+

≥  (4.61) 

and it is easy to that the minimum value βmin of β needed 
for apparent superluminal velocity is 1/√2: 

 cccV 707.0
2

minmin ==≡ β . (4.62) 

The fact that we do see such motion shows that the 
material in the jets feeding the radio lobes is moving 
relativistically14. Note that (sinθ + cosθ) is symmetrical 
about θ = π/4 so that the same value of β is needed for 
the angle (π/4 − Δθ) as for (π/4 + Δθ). The reason for 
this is that, what we lose in a longer light travel time 
(cosθ decreasing) we gain in greater projected distance 
(sinθ  increasing), and vice versa. 

Inequality (4.61) can be manipulated to give the range 
of values for θ which will given superluminal velocities 
for a given value of β: 
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  (4.63) 

4.2.3.2 Velocity of the Lobes 

How can we get an estimate of the velocities with which 
the lobes are separating from the central galaxy? We 
can use the symmetry of the apparent images to get both 
upper and lower limits15. 

V

V

D

VG

δ

Optical galaxy

 
Figure 4.9. Lobe and galaxy velocities. 

Figure 4.9 shows schematically a central galaxy 
between the two radio lobes that are separated by a 

                                                            
14It is important to realise that we are here speaking of the bulk motion 
of the jets. The electrons within the jets may also moving with 
pseudo-random relativistic velocities. 
15There are asymmetrical sources, such as “head-tail” sources, to 
which these arguments clearly do not apply. 

distance D.  Observation puts limits on the ratio of the 
distance δ the galaxy has moved away from the line 
joining the lobes: 

 εδ
~<D

, (4.64) 

where ε is to be determined from observation. Suppose 
that the lobes are separating from the galaxy with 
velocity V whilst the galaxy itself has a component of 
velocity VG at right angles to the line joining the lobes. 
Then 

 VtD ~ , (4.65) 

whilst 

 tVG~δ , (4.66) 

where t is the age of the lobes. From (4.64), (4.65) and  
(4.66), we have 

 
ε
g

~
V

V > . (4.67) 

Because we cannot measure the velocity the galaxy 
directly, we have to apply (4.67) statistically. Typical 
random velocities of galaxies are around 500 km s-1 and 
typical values of δ are less than 0.01 kpc, giving a lower 
limit to values of V of some tens of thousands of 
kilometres a second or ~ 0.1 c. 
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Figure 4.10. Asymmetry of radio sources 

We can also get an upper limit on the velocity from the 
appearance of the source. Figure 4.10 shows lobes 1 and 
2 of a radio source, separated from the central galaxy by 
distances l1 and l2 respectively. Their projected distances 
on the sky, at right angles to the observer's line of sight, 
are p1 and p2 respectively. Let the respective distances 
from earth of lobe 1, the central galaxy and lobe 2 be r1, 
r0 and r2. I suppose that the separation of the two lobes 
from the central galaxy was zero at time to. 

The argument is similar to that used in the discussion of 
superluminal velocity. Consider radiation received at 
the earth from all three components at time tr. The 
radiation from the central galaxy was emitted at time te 
given by 
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c
r

tt 0
re −= . (4.68) 

Similarly, the radiation from the two lobes was emitted 
at times tI given by 

 
c
r

tt i
i −= r . (4.69) 

where i takes the values 1 or 2 for the two lobes 
respectively. From equations (4.68) and (4.69) we have 

 
c
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tt i

i
−

+= 0
e . (4.70) 

But, from the figure, 

 θcos0 ii lrr m= , (4.71) 

where the upper sign refers to lobe 1 and the lower to 
lobe 2. From equations (4.70) and (4.71), we have 
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Note that the radiation we receive at any time from lobe 
1 is emitted later than that from lobe 2 received at the 
same time because lobe 1 is nearer to us than lobe 2. 
Since the lobes have been travelling with velocity V for 
a time (ti – t0), we have for the distances li of the lobes 
from the central galaxy at the time they emitted the 
radiation that is received on earth at time tr, 
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so that 
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and 
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Finally, the projected separations pi are given by 

 θsinii lp =  (4.76) 

so that they are also related by the right hand side of 
equation (4.75): 
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Note that p1 is greater than p2 because the light started 
later from lobe 1, which therefore had a longer time to 
travel. If observation shows that 

 η≤
2

1

p
p

, (4.78) 

then equation (4.77)shows that 

 cV
1
1cos

+
−

≤
η
ηθ . (4.79) 

Unfortunately, the angle θ cannot be measured. We can 
apply inequality (4.79) statistically, though, assuming 
that the orientation of radio galaxies is random. The 
result is that the velocities of radio lobes do not exceed 
about a tenth of the velocity of light. 

4.2.4 CONFINEMENT OF THE RADIO LOBES 

4.2.4.1 Diameter-Separation Ratio 

D
d

V

V

 
Figure 4.11. Diameter-separation ratio of radio lobes. 

Figure 4.11 is a sketch of a typical pair of radio lobes. 
Consider the ratio χ of the separation D of the lobes to 
their diameter d: 

 
d
D

=:χ  (4.80) 

Observed values of χ are around ten or more. Let us 
assume that the two lobes, constantly replenished with 
fresh electrons, have been moving way from the central 
galaxy with velocity V for a time t. Clearly, 

 ctD
≤

2
, (4.81) 

since otherwise they would have been travelling faster 
than light. Now, if there is nothing to stop them, the 
lobes themselves will expand and they will do so at the 
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velocity of sound uS in the gas of which they are 
composed, giving 

 tud S~ . (4.82) 

In general, the velocity of sound of sound in a fluid is 
given by (cf. Note 3) 
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∂
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=
ρ

2  (4.83) 

where p is the pressure and ρ the density. For a 
relativistic fluid, where the pressure is related to the 
energy-density u by 

 2

3
1

3
1 cup ρ== , (4.84) 

we have 

 
3

cuS = . (4.85) 

From relations (4.81), (4.82) and (4.85), we can deduce 
that 

 32~<d
D  (4.86) 

in contradiction of the observed relation (4.119). We 
have therefore to abandon our hypothesis that the lobes 
are unconfined and seek some confinement mechanism. 

4.2.4.2 Inertial Confinement 

Let us first try an inertial mechanism for confining the 
lobes. Let us suppose that, in addition to the relativistic 
electrons, the lobes contain much more non-relativistic 
material of mass M. If we also assume that this material 
is ionised, it will be “glued” to the electrons by 
electromagnetic forces, thus providing them with 
additional inertial mass. In this case, the pressure of the 
lobes will be dominated by that of the relativistic 
electrons whilst their mass will be dominated by the 
non-relativistic material. The velocity of sound will 
therefore be given by [cf. Equation (4.83)] 
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 (4.87), 

where U ~ (d3× u) is the total energy in the lobes. 
Hence, 
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On the other hand, if the lobes are separating from the 
nucleus at velocity V, we must have (cf. Figure 4.11) 

 VtD 2~ . (4.89) 

Using relations (4.88) and (4.89), we get 
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where T is the total bulk kinetic energy of a lobe. From 
equations (4.90) and (4.80), we have 

 UT 2

8
1~ χ . (4.91) 

From the observed values of χ, it seems that we need at 
least an order of magnitude more energy T, in the form 
of bulk motion of the lobes, to confine the lobes in this 
way. Since U is already embarrassingly high, this does 
not seem an attractive solution! 

4.2.4.3 Ram-Pressure Confinement 

V

Shock front

Shocked gas

Unshocked gas

 
Figure 4.12.Ram-pressure confinement. 

Another possibility is to attempt to confine the lobes by 
means of their supersonic motion through the 
extragalactic gas. Such supersonic motion will create a 
shock wave, as sketched in Figure 4.12. The material 
that is being pushed out of the way by the lobe will 
exert a pressure on it. Remembering that 
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=
=

 (4.92) 

we can see that the ram-pressure pram exerted on the lobe 
by the external gas is given by 
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 (4.93) 

where ρexternal is the density of the extragalactic gas. The 
work W done by the lobes against this pressure is given 
by 
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where I have used equation (4.84). We see that, ram-
pressure confinement again requires at least several 
times the internal energy of the lobes in order to do be 
effective. 

4.2.4.4 Thermal Confinement 

Finally, let us see what happens if the lobes are moving 
subsonically through the extragalactic medium and that 
they are confined by the thermal pressure pexternal exerted 
on them by that medium.  We must have 

 internalexternal pp =  , (4.95) 

where pinternal is the pressure within the lobes. Because 
this pressure is exerted by the electrons within the lobes, 
it is given by equation (4.84): 

 internalinternal 3
1 up = . (4.96) 

where uinternal is the energy density in the lobes. On the 
other hand, the pressure in the extragalactic medium is 
thermal and is therefore given by 

 extarnalexternalexternal kTnp = , (4.97) 

where nexternal and Texternal are the particle density and 
temperature of the external medium respectively. We 
have, therefore, 

 internalexternalexternal 3
1 ukTn = . (4.98) 

Observations of X-ray emission from intra-cluster gas 
(cf. Note 5) show that the condition given by equation 
(4.98) is feasible, at least in clusters. 

4.2.4.5 Summary and Conclusions 

Inertial ram-pressure confinement models can be 
constructed in which the lobes move, with about a tenth 
of the velocity of light, through an external medium 
with density 10-25 to 10-24 kg m-3. These densities are 
acceptable and consistent with X-ray results for the 
intra-cluster medium but they cannot be universal. The 
results from thermal confinement models of low-
luminosity radio sources are also consistent with the X-
ray observations of clusters but require too high a 
density for high-luminosity sources.. 

4.3 The Particle Energy Spectrum 
4.3.1 THE NEED FOR AN ACCELERATION MECHANISM 

Although we have tentatively identified the source of 
energy we see in AGN, we have not yet explained how 
the particles in radio sources are accelerated to 
relativistic energies. Nor have we any explanation for 

the observed power-law spectrum of particle energies 
given by equation (4.13): 
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⎠
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⎝

⎛
=

o
o   

with p often equal to about 2.5. There is no final answer 
to these questions but we can get some insight into 
likely processes. All current ideas involve multiple 
interactions with macroscopic scattering centres such as 
turbulent eddies, plasma waves or shock-fronts. 

4.3.2 STOCHASTIC ACCELERATION16 

4.3.2.1 General Scheme 

 
Figure 4.13. Scattering centres. 

We imagine the interaction of fast-moving particles – 
mainly electrons and protons – with slower moving, but 
much more massive, scatterers that have much more 
energy than the particles. The actual mechanism by 
which the particle is scattered turns out to be immaterial 
but is presumably electromagnetic. Figure 4.13 
represents a particle entering a region with a population 
of scatterers, undergoing multiple collisions and then 
escaping. The probability of the particle having a given 
energy on escape is determined by the balance between 
the rate of growth of its energy and its rate of escape. 

4.3.2.2 Elastic Collisions between Particles 

Suppose the particle of mass m and velocity v collides 
with the scatterer of mass M and velocity V. Let the 
velocities of the particle and scatterer after collisions be 
v’ and V’ respectively. In one dimension, conservation 
of momentum gives us that17 

 VMvmMVmv ′+′=+  (4.99) 

whilst conservation of energy gives 

 2222

2
1

2
1

2
1

2
1 VMvmMVmv ′+′=+ . (4.100) 

Equations (4.99) and (4.100) can be solved to give 

                                                            
16 This problem is really a relativistic one, but the treatment given here 
gives the right qualitative result. 
17I use classical, rather than relativistic, mechanics but this does not 
affect the conclusions. 
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If M >> m, equations (4.101) reduce to 
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In overtaking collisions, where v is in the same direction 
as V,  

 Vvv 2−=′ , (4.103) 

representing a loss in energy. In head-on collisions, on 
the other hand, where v is in the opposite direction to V, 

 Vvv 2+=′ , (4.104) 

so that the particle gains energy. If E and E' are the 
initial and final energies respectively of the particle, 
then 
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If v >> V, then 

 ( )vVvmE 4
2
1 2 ±≈′  (4.106) 

so that the change in energy ΔE is given by 

 
v
VEvVmEEE 44

2
1

±=×±≈−′≡Δ . (4.107) 

The change in the particle’s energy is therefore 
proportional to the energy itself 

This is solution to the one-dimensional problem. For 
two- or three-dimensional scattering, the final velocities 
are under-determined unless we specify the angle 
through which the particle is scattered. But, for isotropic 
scattering, the one-dimensional solution is a good 
approximation to the average change in velocity. 
Realistic scattering, will not necessarily be either 
isotropic or elastic. A more detailed analysis typically 
gives a result similar to (4.107) but, with the factor of 
four replaced by unity: 

 .
v
VEE ±≈Δ . (4.108) 

Assuming that the velocity of the particle is already 
comparable to c, we have 

 .
c
VEE ±≈Δ . (4.109) 

where the positive sign holds for head-on collisions and 
the negative for overtaking collisions. 

4.3.2.3 Growth of Energy 

At first sight, we seem to have achieved nothing: what 
we gain in head-on collisions, we lose in overtaking 
ones. But, head-on collisions are slightly more frequent 
because the number of collisions per unit time depends 
on relative velocity vrel of particle and “target” (cf. 
Note 3), the rate being given by 

 relvnR σ= , (4.110) 

where n is the number-density of the scatterers and σ is 
their cross-section. The rate R+ of head-on collisions is 
therefore given by 

 ( )VcnR +=+ σ
2
1 , (4.111) 

where the factor of one half reflects the fact that the 
particles are equally likely to be going in either 
direction. Similarly, the rate R- of overtaking collisions 
is given by 

 ( )VcnR −=− σ
2
1 . (4.112) 

The total rate R is given by 

 cnRRR σ=+≡ −+  (4.113) 

and the net rate Rnet by 

 VnRRR σ=−≡ −+  (4.114) 

The net rate of energy gain E&  is given by 
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where βscatterer is the velocity of the scatterer measured as 
a fraction of the velocity of light: 

 
c
V

=:scattererβ . (4.116) 

The average energy gain per collision ΔEnet is therefore 
given by 
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Suppose the average time between collisions is τ. Each 
collision gives ΔEnet so that the energy gained dE in 
time dt is given by 

 netEdtdE Δ×=
τ

 (4.118) 

or 
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Equation (4.83) predicts exponential growth of energy 
with time: 

 ⎥⎦
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Inversely, the time t(E) required to reach energy E is 
given by 
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4.3.2.4 Loss-rate 

Let N(E)dE be number density of particles with energies 
in range E to E + dE. Suppose that the probability P of 
an electron’s escape from the scattering region is 
independent of time and energy. Then, in time dt, the 
decrease dNescape(E) in the density of particles through 
escape is given by 

 ( ) ( )PdtENEdN =escape  (4.122) 

so that the rate ( )EN escaope
& of escape  of particles with 

energy E is given by 
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T
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EdN

EN =≡ escape
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& , (4.123) 

where the leakage time T is given by 

 
P

T 1:= . (4.124) 

4.3.2.5 Resultant Energy Distribution 

The equation of continuity equation in one-dimensional 
energy-space is18 

                                                            
18 This can be obtained by adapting the continuity equation of Note 3 
to one dimension. 
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Let us consider the steady state in which the density 
N(E) of electrons in energy-space is constant. 
Setting ( ) tEN ∂∂ to zero in equation (4.125) and 
substituting from equation (4.119) for dE/dt, we have  
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which has solution 
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where No and Eo are constants and 

 
T
τ

β
γ 2

scatterer

11 += . (4.128) 

Hence this so-called second-order Fermi acceleration 
mechanism gives the desired power-law. Unfortunately, 
τ, Τ and βscatterer depend upon the physical processes 
going on in the source and does not predict the 
“universal” value of 2.5 for γ. Let us try something 
different. 

4.3.3 SHOCK ACCELERATION 

4.3.3.1 Energy-Gain 

VSVf

 
Figure 4.14. Shock acceleration. 

An alternative mechanism is provided by the sort of 
shock fronts that we might expect to exist in the highly 
excited regions that exist around AGN. Figure 4.14 
shows – in the rest frame of the shock front – scattering 
centres both upstream and downstream of the shock. 
These centres are more or less at rest in the material 
surrounding them and are therefore approaching each 
other at velocity ΔV, the difference in velocity between 
the speed relative to the shock of the upstream and 
downstream material: 

 fS VVV −=Δ , (4.129) 
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where VS is the velocity of the shock advancing into the 
unshocked region and Vf is velocity of the material 
flowing away downstream of the shock front (cf. 
Note 3).  

l

Line of upstream scattersLine of downstream scatters

Shock front c

 
Figure 4.15. Multiple crossing of shock front. 

Now consider electrons moving, at velocities nearly 
equal to c, crossing the shock front, bouncing off a 
scatterer, travelling back across the front, bouncing off 
another scatterer to re-cross the front again, etc, as 
shown schematically in Figure 4.15. The electrons meet 
the scatterers head on each time so that the gain in 
energy at each double crossing of the front is given by 
twice equation (4.108) with the positive sign and with V 
replaced by ΔV: 

 
c
VEE Δ

=Δ 2 . (4.130) 

Compare this first-order process, with the random 
collisions of section 4.3.2, in which the fractional 
change in energy was only second-order in ΔV/c. In the 
present case, the equivalent of equation (4.119) is 

 
τ

β
τ

EE
dt
dE

=
Δ

= , (4.131) 

whereτ is the mean time between scatterings, as before,  
and where β is now given by 

 
c
VΔ

= 2β . (4.132) 

4.3.3.2 Loss-rate 

What about the time T required for the loss of electrons 
from the scattering region? Although the electrons are 
individually moving almost with velocity c, the net rate 
at which material crosses the front is only ΔV, the 
difference between the upstream and downstream 
velocities. If l  is the typical distance between scatterers 
on either side of the front, we must have 

 V
T

Δ~l . (4.133) 

On the other hand, the electron crosses the front many 
times during this process at velocity c so that the mean 
time τ between double scatterings, is given by 

 c~2
τ
l . (4.134) 

From equations (4.133), (4.132) and (4.134), therefore, 

 
β
τ

β
τ

=
Δ c

c
V

T ~~ l . (4.135) 

This is the key to getting a process-independent spectral 
index: the escape time is directly related to the mean 
time between scatterings.  

4.3.3.3 Resultant Energy Distribution 

With this new mechanism, the solution to equation 
(4.126) is still given by (4.127): 
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but γ  is now given by 

 ( ) 21111 =+=+=
βτ

τ
β

τ
β

γ
T

, (4.136) 

where I have used equation (4.135). We were trying to 
get a value of 2.5 for γ and have managed to get a value 
of 2. Not quite, therefore, but pretty close and at least 
totally independent of the detailed conditions in the 
source. It is likely, therefore that some modification of 
the process, including the effects of radiation losses, 
will prove to be the correct model. 
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