

SUMMARY OF PHOTON PROPERTIES Relation between particle and wave properties of light Energy and frequency E = hvAlso have relation between momentum and wavelength Relativistic formula relating $E^2 = p^2 c^2 + m^2 c^4$ For light E = pc and $c = \lambda v$ $p = \frac{h}{\lambda} = \frac{hv}{c}$ Also commonly write these as $E = \hbar \omega$ $p = \hbar k$ $\omega = 2\pi v$ $k = \frac{2\pi}{\lambda}$ $\hbar = \frac{h}{2\pi}$

Estimate some de Broglie wavelengths

• Wavelength of electron with 50eV kinetic energy

$$K = \frac{p^2}{2m_e} = \frac{h^2}{2m_e\lambda^2} \Longrightarrow \lambda = \frac{h}{\sqrt{2m_eK}} = 1.7 \times 10^{-10} \,\mathrm{m}$$

• Wavelength of Nitrogen molecule at room temperature

$$K = \frac{3kT}{2}, \quad \text{Mass} = 28m_u$$
$$\lambda = \frac{h}{\sqrt{3MkT}} = 2.8 \times 10^{-11} \text{ m}$$

• Wavelength of Rubidium(87) atom at 50nK

$$\lambda = \frac{h}{\sqrt{3MkT}} = 1.2 \times 10^{-6} \,\mathrm{m}$$

CONCLUSIONS	
Light and matter exhibit wave-particle duality	
Relation between wave and particle properties given by the de Broglie relations	$E = hv p = \frac{h}{\lambda}$
Evidence for particle properties of light Photoelectric effect, Compton scattering	
Evidence for wave properties of matter Electron diffraction, interference of matter waves (electrons, neutrons, He atoms, C60 molecules) Heisenberg uncertainty principle limits simultaneous knowledge of conjugate variables	$\Delta x \Delta p_x \ge \hbar/2$ $\Delta y \Delta p_y \ge \hbar/2$ $\Delta z \Delta p_z \ge \hbar/2$