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The formal basis of quantum mechanics

• Overview of the postulates of quantum mechanics

• Linear Hermitian Operators
eigenvalues and eigenvectors
orthonormality and completeness

• Predicting results of measurements
expectation values
collapse of the wavefunction

• Commutation relations 
compatible observables
uncertainty principle

• Wavepackets

Outline of section 4

Formal basis of quantum 
mechanics

This section puts quantum mechanics onto a more formal
mathematical footing by specifying those postulates of the theory 
which cannot be derived from classical physics.

Main ingredients:

1. The wave function (to represent the state of the system)

2. Hermitian operators and eigenvalues (to represent observables)

3. A recipe for finding the operator associated with an observable

4. A description of the measurement process, and for predicting the
distribution of possible outcomes

5. The time-dependent Schrödinger equation for evolving the 
wavefunction in time
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For a single particle moving 
in one dimension:

The wave function
Postulate 1: For every dynamical system, there exists a wavefunction Ψ that 
is a continuous, square-integrable, single-valued function of the coordinates of 
all the particles and of time, and from which all possible predictions about the 
physical properties of the system can be obtained.

Examples of the meaning of “The coordinates of all the particles”

For a single particle moving 
in three dimensions:

For two particles moving in three 
dimensions:

( )1 2, ,tΨ r r

If we know the wavefunction we know everything it is possible to know.

( ),x tΨ

( ),tΨ r

Square-integrable means that the normalization integral is finite

Observables and operators

1 1 2 2 1 1 2 2

1 2

1 2

ˆ ˆ ˆ[ ] [ ] [ ]
(for arbitrary functions  and  and 
constants  and )

L c f c f c L f c L f
f f

c c

+ = +

1

2

3

4

ˆ [ ] 2
ˆ [ ]
ˆ [ ]

dˆ [ ]
d

L f f

L f xf

L f x
fL f
x

≡ +

≡

≡

≡

Postulate 2a:  Every observable is represented by 
a Linear Hermitian Operator (LHO).

An operator L is linear
if and only if

Examples: which of the following operators are linear?

Note: the operators involved may or 
may not be differential operators
(i.e. they may or may not involve 
differentiating the wavefunction).
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Hermitian operators
*

* *

* *

ˆ ˆ( )d ( )d

ˆ( )d

i j j i

j i

f Of x f Of x

f O f x

∞ ∞

−∞ −∞

∞

−∞

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

=

∫ ∫

∫

*

ij jiM M⎡ ⎤= ⎣ ⎦

ijM

An operator O is 

Hermitian if and only if

for all functions fi fj which vanish at infinity

Compare the definition of a 
Hermitian matrix M

Analogous if we identify a 
matrix element with an integral:

* ˆ( )di jf Of x
∞

−∞
∫

* *ˆ ˆ( )d ( )d
ii j jf Of x f Of x

∞ ∞

−∞ −∞

=∫ ∫Special case. 
If operator O is real, this is

Hermitian operators:
examples

The operator  is Hermitianx

dThe operator  is not Hermitian
dx

2

2

dThe operator  is Hermitian
dx

dbut -i  is Hermitian
dx
=

* * *ˆ ˆ( )d ( )di j j if Of x f O f x
∞ ∞

−∞ −∞

=∫ ∫
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Eigenvectors and eigenfunctions
Postulate 2b: the eigenvalues of the linear Hermitian operator give the possible 
results that can be obtained when the corresponding physical quantity is measured.

Definition of an eigenvalue for a general linear operator

Example: the time-independent 
Schrödinger equation:

Compare definition of an eigenvalue of a matrix

eigenfunction 

eigenvalue operator

ˆ n n naφ λ φ=

λ=Mx x

2 2

2
ˆ ( ) ( ) ( ) ( )

2
dH x V x x E x

m dx
ψ ψ ψ

⎡ ⎤
= − + =⎢ ⎥
⎣ ⎦

=

Important fact: The eigenvalues of a Hermitian operator are real
(like the eigenvalues of a Hermitian matrix). Proof later.

Identifying the operators

ˆ xp i
x
∂

= −
∂
=x̂ x= ˆ =r r

Postulate 3: the operators representing the position and momentum of a particle are

Other operators may be obtained from the corresponding classical quantities by 
making these replacements everywhere.

Examples:

Angular momentum (see Section 5)

(one dimension)

ˆ i i
x y z

⎡ ⎤∂ ∂ ∂
= − + + = − ∇⎢ ⎥∂ ∂ ∂⎣ ⎦

p i j k= =

(three dimensions)

ˆ i= × → = − ×∇L r p L r=

22 2 2
x

x x 2

p 1ˆK =   K =   
2m 2 2

i
m x m x

∂ ∂⎛ ⎞⇒ − = −⎜ ⎟∂ ∂⎝ ⎠
==Kinetic energy

Hamiltonian (Energy) ( ) ( )
2 2 2

2
ˆ

2 2
pH V x H V x
m m x

∂
= + ⇒ = − +

∂
=
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( ) ( )p pi x p x
x
φ φ∂

⇒ − =
∂
=

( ) /ikx ipx
p x e eφ = = =

( ) ( ) ( )ikx ikx ikxi e hk e p e
x
∂

− = =
∂
=

p = ħk from the de Broglie relation

Example: Momentum eigenfunctions

Eigenfunctions are plane waves

( ) ( )ˆ x p pp x p xφ φ=

Momentum 
eigenfunction

Eigenvalue
= the momentum

Momentum 
operator
ˆ xp i

x
∂

= −
∂
=

Eigenfunction equation

(i) The eigenvalues are real

(ii) Different eigenfunctions are orthogonal

(iii) The eigenfunctions form a complete set

Important properties of
Linear Hermitian Operators

ˆ
n n nQ qφ φ=

*
nnq q=

( ) ( )* d 0,  ( )m nx x x m nφ φ
∞

−∞

= ≠∫

( ), ( ) ( )n n
n

x t a t xφΨ =∑

In the eigenvalue equation
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ˆ (1)
ˆ (2)

n n n

m m m

Q q

Q q

φ φ

φ φ

=

=

Proof of (i) and (ii)

Important properties of
Linear Hermitian Operators (2)

( )* * 0
m mn nq q dxφ φ

∞

−∞

− =∫

Case 1: n = m

Case 2: n ≠ m and * 0
mn m nq q dxφ φ

∞

−∞

≠ ⇒ =∫

* *0
n nn ndx q qφ φ

∞

−∞

≠ ⇒ =∫ * 1
n ndxφ φ

∞

−∞

=∫Can choose normalized 
eigenfunctions

*

* *ˆ ˆ( )d ( )di j j if Qf x f Qf x
∞ ∞

−∞ −∞

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

∫ ∫

Use the Hermitian property to show

Reminder: Hermitian property

* * *

* *
* * * *

ˆ(1)

ˆ(2)

m m m

n m m

n n n

n m n

Q dx q dx

Q dx q dx

φ φ φ φ φ

φ φ φ φ φ

× ⇒ =

⎡ ⎤ ⎡ ⎤× ⇒ =⎣ ⎦ ⎣ ⎦

∫ ∫ ∫
∫ ∫ ∫

Case 3: n ≠ m but n mq q= next!

Important properties of
Linear Hermitian Operators (3)

Any linear combination of degenerate 
eigenfunctions is also an eigenfunction 
with the same eigenvalue:

So we are free to choose two linear combinations that are orthogonal, e.g.

If the eigenfunctions are all orthogonal and
normalized, they are said to be orthonormal.

* 1, if 

0, if 
m n mndx m n

m n

φ φ δ
∞

−∞
= = =

= ≠
∫

[ ]

[ ]

1 1 2 2 1 1 2 2

1 1 2 2

1 1 2 2

ˆ ˆ ˆ[ ] [ ]Q c c c Q c Q
c q c q
q c c

φ φ φ φ
φ φ
φ φ

+ = +

= +

= +

1

1 1 2 2

a

b c c
φ φ
φ φ φ

=
= +

Two coefficients and two constraints:
normalization and orthogonality

Case 3: n ≠ m but n mq q= (degenerate eigenvalues)



PHYS2B22 Quantum Physics
Evening course lecture notes. Set 4.

Sam Morgan 2005

7

Orthonormality example: Infinite well
Consider the two lowest energy eigenfunctions of the time-independent 
Schrödinger equation for an infinite square well

( )

( )

1

2

1 cos
2

1 2sin
2

x x
aa

x x
aa

πψ

πψ

⎛ ⎞= ⎜ ⎟
⎝ ⎠
⎛ ⎞= ⎜ ⎟
⎝ ⎠

1 2cos sin 0
2 2

a

a

x x dx
a a a

π π
−

⎛ ⎞ ⎛ ⎞ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫

( )1 xψ

( )2 xψ

x = -a x = a

We have the integral of an odd function 
over an even region, which is zero.
The eigenstates are orthogonal because 
their positive and negative regions give 
cancelling contributions to the integral.

Normalized eigenstates are

Orthonormality example: Infinite well (2)

General case ( )

( )

1 cos , 1,3,5
2

1 sin , 2, 4,6
2

n

n

nx x n
aa
nx x n
aa

πψ

πψ

⎛ ⎞= = ∞⎜ ⎟
⎝ ⎠
⎛ ⎞= = ∞⎜ ⎟
⎝ ⎠

…

…

1 sin sin
2 2

a

mna

n x m x dx
a a a

π π δ
−

⎛ ⎞ ⎛ ⎞ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫

1 cos cos
2 2

a

mna

n x m x dx
a a a

π π δ
−

⎛ ⎞ ⎛ ⎞ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫

1 cos sin 0
2 2

a

a

n x m x dx
a a a

π π
−

⎛ ⎞ ⎛ ⎞ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫

Can easily prove orthonormality using trigonometry formulas

These results are already 
familiar from Fourier series
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Complete sets of functions
The eigenfunctions φn of a Hermitian operator 
form a complete set. This means that any 
other function satisfying the same 
boundary conditions can be expanded as:

( ) ( )n n
n

x a xψ φ=∑

If the eigenfunctions are orthonormal, the 
coefficients an can be found as follows (in 1D)

These expansions are very important in describing the measurement process.

( ) ( ) ( ) ( )

( ) ( )

* *

*

n n m m
m

m n m n
m

x x dx x a x dx

a x x dx a

φ ψ φ φ

φ φ

∞ ∞

−∞ −∞

∞

−∞

=

= =

∑∫ ∫

∑ ∫

( ) ( )*
n na x x dxφ ψ

∞

−∞
= ∫

This expansion is a generalization of the Fourier series.
This sum of different eigenstates is called a superposition.

Proof

*
n m mndxφ φ δ

∞

−∞
=∫

Orthonormality

Particles can have a discrete set of eigenvalues (like the harmonic oscillator or 
infinite potential well) or they can have a continuum of energies (e.g. a free particle).

( ) ( ) ( )( ) ( ) ,n n
n

x a x x a k k x dkψ φ ψ φ
∞

−∞

= → =∑ ∫

( ) ( ) ( ) ( ),
2 2

ikx ikxe ex a k dk a k x dxψ ψ
π π

∞ ∞ −

−∞ −∞

= =∫ ∫

E.g. Free particles: Use momentum eigenstates

This is just a Fourier decomposition

For a continuum, use an integral instead of a sum in the wavefunction expansion

( ) ( ) ( )* ,a k k x x dxφ ψ
∞

−∞

= ∫

Completeness for a continuum
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Expansion in complete sets: examples

( ) 1 2 5cos 3sin 5 cos
2 2 23
x x xx
a a aa

π π πψ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

( )

( )

1 cos , 1,3,5
2

1 sin , 2, 4,6
2

n

n

nx x n
aa
nx x n
aa

πψ

πψ

⎛ ⎞= = ∞⎜ ⎟
⎝ ⎠
⎛ ⎞= = ∞⎜ ⎟
⎝ ⎠

…

…

( ) ( )n n
n

x a xψ φ=∑

( ) ( )*a

n na
a x x dxφ ψ

−
= ∫

1)

A particle is in an infinite well from –a to a. For the wavefunctions given, find the 
coefficients an in an expansion using the Hamiltonian eigenstates (the wavefunctions 
are zero outside the well of course).

2) ( ) 1
2

x
a

ψ =
Hamiltonian eigenstates

Expansion in complete sets: examples
Plot of partial expansions of ( ) 1

2
x

a
ψ =

First term

First 5 non-zero terms

First 15 non-zero terms
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Eigenfunctions and measurement

( ) ( ).n n
n

x a xψ φ=∑

Postulate 4a: When a measurement of the observable Q is made on a 
normalized wavefunction ψ, the probability of obtaining the eigenvalue qn
is given by the modulus squared of the overlap integral

The meaning of these “probabilities” for a single system is still a matter for debate. 
The usual interpretation is that the probability of a particular result determines the 
frequency of that result in measurements on an ensemble of similar systems.

( ) ( ) ( )2 *Pr ,n n n nq a a x x dxφ ψ
∞

−∞
= = ∫

This corresponds to expanding the wavefunction in 
the complete set of eigenstates of the operator for the 
physical quantity we are measuring and interpreting 
the modulus squared of the expansion coefficients as 
the probability of getting a particular result. This is the 
general form of the Born interpretation

Corollary: if a system is definitely in the eigenstate φn, the result of 
measuring Q is definitely the corresponding eigenvalue qn.

Expectation values
The expectation value is the average (mean) value of many measurements. 
It is the sum of all the possible results times the corresponding probabilities:

( ) 2Pr n n n n
n n

Q q q a q= =∑ ∑

We can also 
write this as: ( ) ( )* ˆQ x Q x dxψ ψ

∞

−∞
= ∫

* *

* *

2* *

ˆ
m m n n

m n

m m n n n
m n

m n n m n n n
m n n

Q a Q a dx

a a q dx

a a q dx a q

φ φ

φ φ

φ φ

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= =

∑ ∑∫

∑ ∑∫

∑∑ ∑∫

ˆ
n n nQ qφ φ=
*
n m mndxφ φ δ=∫

( ) ( )n n
n

x a xψ φ=∑

Proof

Expand Ψ in eigenstates of Q
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Wavefunction Normalization

The normalization of the wavefunction is

Can prove this using the expectation value of the operator Q = 1!
The eigenvalues of Q = 1 are qn = 1 so we have

( ) ( )

( ) ( )

2*

2*

ˆ ,

1 1 1, 1 1

n n
n

n
n

Q x Q x dx Q a q

x x dx a

ψ ψ

ψ ψ

∞

−∞

∞

−∞

= =

= = = =

∑∫

∑∫

( ) ( )* 1N x x dxψ ψ
∞

−∞
= =∫

2 1n
n
a =∑ for a normalized 

wavefunction

This is consistent with the probability 
interpretation for expansion coefficients 

( ) 2 2Pr 1n n n
n

q a a= ⇒ =∑

We can also write this in terms of 
the expansion coefficients

Expectation Values: 
examples

( ) 1 2 5cos 3sin 5 cos
2 2 23
x x xx
a a aa

π π πψ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

( )

( )

1 cos , 1,3,5
2

1 sin , 2,4,6
2

n

n

nx x n
aa
nx x n
aa

πψ

πψ

⎛ ⎞= = ∞⎜ ⎟
⎝ ⎠
⎛ ⎞= = ∞⎜ ⎟
⎝ ⎠

…

…

1) A particle is in the ground state of an infinite well from –a to a. 
What is the expectation value of the position and the momentum?

2) For the same infinite well, a particle has wavefunction

Check that this is correctly normalized.
What is the expectation value of the energy?

2 2 2

28n
nE
ma
π

=
=
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Expectation Values: examples
3)  A particle is in the ground state of a harmonic oscillator potential 
of frequency ω:

Calculate the average value of its kinetic energy. You may use:

( ) ( )
1/ 4

2
0 exp / 2mx m xωψ ω

π
⎛ ⎞= −⎜ ⎟
⎝ ⎠

=
=

( ) ( )
3

2 2 2 2 2exp / exp /
2

ax a dx a x x a dx ππ
∞ ∞

−∞ −∞
− = − =∫ ∫

Postulate 4b: Immediately after a measurement, the wavefunction is an 
eigenfunction of the operator corresponding to the eigenvalue just obtained 
as the measurement result.

This ensures that we are guaranteed to get the same result 
if we immediately re-measure the same quantity.

Collapse of the wavefunction

This is the famous collapse of the wavefunction and is
an idea mainly due to John von Neumann in 1932.

Problem: This is a different time-evolution from the Schrödinger equation.
How do we know when to use the Schrödinger equation and when to use 
collapse, i.e. what constitutes a measurement? 

( ) ( ) ( ) ( )n n n
n

x a x x xψ φ ψ φ= → =∑ 2Pr na=

2( ) ( ) Pr( ) 1n n nx x q aψ φ= ⇒ = =
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A ‘folk tale’ for 
quantum measurement ….

A quantum state in a superposition 
is like a mythical beast, a Chimera, 
which is part lion, part goat…

Make a measurement!

Offer the Chimera a cabbage 
and a steak.

If it takes the cabbage, it is 
definitely a goat. If it takes the 
steak, it is definitely a lion…

Problem: is it a goat or a lion?

Actually, of course, it is neither.
It is a superposition! 

It behaves like a goat if you treat 
it like a goat and like a lion if you 
treat it like a lion  (rather like 
particle-wave duality, cf. the 
double-slit experiment!)

Evolution of the system
Postulate 5: Between measurements (i.e. when it is not disturbed by 
external influences) the wavefunction evolves with time according to the 
time-dependent Schrödinger equation.

ˆi H
t

∂Ψ
= Ψ

∂
=

Hamiltonian operator.

This is a linear, homogeneous differential equation, so the linear 
combination of any two solutions is also a solution.

This is the superposition principle.

1
1

2
2

ˆ

ˆ

i H
t

i H
t

∂Ψ
= Ψ

∂
∂Ψ

= Ψ
∂

=

=
( ) ( )1 2

1 2
ˆi H

t
∂ Ψ +Ψ

= Ψ +Ψ
∂

=
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Time dependent expansions

( , ) exp( / ) ( )n nx t iE t xψΨ = − =

( ) ( )ˆ
n n nH x E xψ ψ=

Simple special case:

Suppose the Hamiltonian is time-independent.  
We know that separated solutions of the TDSE
exist in the form:

The eigenfunctions of the TISE form a complete 
set, so we can expand the initial wavefunction as 

Hence we can find the complete time 
dependence from the superposition principle

( ,0) (0) ( )n n
n

x a xψΨ =∑

( ) ( )

( ) ( )*

, ( )

( ) ,

n n
n

n n

x t a t x

a t x x t dx

φ

φ
∞

−∞

Ψ =

= Ψ

∑

∫

We can expand the full time-dependent wavefunction
using time-dependent expansion coefficients.

We can work out how these evolve using the TDSE
for Ψ(x,t) and the overlap integral.

( , ) (0)exp( / ) ( )n n n
n

x t a iE t xψΨ = −∑ =

( )na t

Commutators

ˆ ˆˆ ˆ (in general)QR RQψ ψ≠
In general operators do not commute: 
the order in which the operators act on 
functions matters.

Example, position and momentum operators:

We define the commutator as the 
difference between the two orderings:

Two operators commute only if their 
commutator is zero.

ˆ ˆ ˆˆ ˆ ˆ,Q R QR RQ⎡ ⎤ ≡ −⎣ ⎦

For position and momentum:

( )

ˆ ˆ

ˆ ˆ

x

x

xp x i i x
x x

p x i x i i x
x x

ψψ ψ

ψψ ψ ψ

∂ ∂⎛ ⎞= − = −⎜ ⎟∂ ∂⎝ ⎠
∂ ∂⎛ ⎞= − = − −⎜ ⎟∂ ∂⎝ ⎠

= =

= = =

ˆ ˆ xx x p i
x
∂

= = −
∂
=

[ ]ˆ ˆ, xx p iψ ψ= = [ ]ˆ ˆ, xx p i= =
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Compatible operators
Two observables are compatible if their operators share the 
same eigenfunctions (but not necessarily the same eigenvalues). 

Consequence: two compatible observables can have 
precisely-defined values simultaneously.

ˆ

ˆ
n n n

n n n

Q q

R r

φ φ

φ φ

=

=

Start with general wavefunction ( ) ( ).n n
n

x a xψ φ=∑

For simplicity we only consider the non-degenerate case here.

Measure observable 
Q. Get result qm with 
(probability |am|2)

Wavefunction collapses 
to corresponding 
eigenfunction φm

Measure observable R. 
Definitely get rm
(eigenvalue of R for φm)

Wavefunction 
is still φm

Re-measure Q. 
Definitely get qm again

( ) ( ) ( )n n m
n

x a x xψ φ φ= →∑

( ) ( )mx xψ φ=

Compatible operators (2)
Compatible operators commute

Proof Expand ψ in the set of simultaneous eigenfunctions ( ) ( )n n
n

x a xψ φ=∑

( ) ( )
( )
( )

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ

0

n n
n

n n n n n
n

n n n n n n n
n

QR RQ a QR RQ

a Qr Rq

a r q q r

ψ φ

φ φ

φ φ

− = −

= −

= − =

∑

∑

∑

( )ˆ ˆˆ ˆ 0

ˆ ˆ, 0

QR RQ

Q R

ψ⇒ − =

⎡ ⎤⇒ =⎣ ⎦

ˆ

ˆ
n n n

n n n

Q q

R r

φ φ

φ φ

=

=

Can also prove the converse (see Rae Chapter 4) :
if two operators commute then they are compatible. 
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Example: position and momentum

[ ]ˆ ˆ, xx p i= =

[ ]ˆ ˆ,

0

yx p x i i x
y y

i x i x
y y

ψψ ψ

ψ ψ

⎛ ⎞ ⎛ ⎞∂ ∂⎡ ⎤ = − − −⎜ ⎟ ⎜ ⎟⎣ ⎦ ∂ ∂⎝ ⎠ ⎝ ⎠
∂ ∂

= − + =
∂ ∂

= =

= =

ˆ ˆ, 0yx p⎡ ⎤ =⎣ ⎦

But now consider

x and px do not commute.
There are no functions which are simultaneous 
eigenfunctions of the position and momentum operators

This is directly related to the uncertainty principle.
If we measure x we lose information about px and vice versa 2xx p∆ ∆ ≥

=

So x and py commute. The x position and y momentum are compatible. 
We can know x and py at the same time with arbitrary accuracy.

How does [ ]ˆ ˆ, xx p i= =   relate to the Uncertainty Principle? 
2xx p∆ ∆ ≥
=

( ) ( )

( ) ( )

2 2

2 2
x x x

x x x

p p p

∆ = −

∆ = −

Outline derivation of the UP (see Rae §4.5)

Define rms deviations Use Schwarz’s Inequality to obtain

[ ]1 1ˆ ˆ,
2 2

2

x x

x

x p x p i

x p

∆ ∆ ≥ =

⇒ ∆ ∆ ≥

=

=

Commutation relations and 
the Uncertainty Principle

In general we get an uncertainty relation 
for any two incompatible observables, 
i.e. whose corresponding operators do 
not commute

1
2

ˆ ˆFor general non-commuting operators ,

ˆ ˆ,

Q R

q r Q R⎡ ⎤∆ ∆ ≥ ⎣ ⎦
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Wavepackets and the
Uncertainty Principle

Write this as a Fourier transform 
(expansion in momentum eigenstates)

E.g. real space probability density

Wavepackets are the best way of describing a quantum system 
with both particle-like and wave-like characteristics.

We cannot have absolute certainty of both position and momentum.
But we can construct a wavepacket which is localized in both
position and momentum

( ) ( )
( ) ( )

0 2 2

2 2 2

exp / 4

exp / 2

ik xx e x

x x

ψ σ

ψ σ

∝ −

∝ −

( ) ( )

( ) ( )22
0

1
2

ikx

k k

x dk A k e

A k e σ

ψ
π

∞

−∞

− −

=

⇒ ∝

∫ ( ) ( )22
0

2 2 k kA k e σ− −∝

2( )xψ

x

Width σ∝

k

2( )A k

k0

Width 1/σ∝

Wavepackets and the 
Uncertainty Principle (2)

Rough uncertainty in postion given 
from the point where the Gaussian 
falls to 1/e of its peak value

Similarly, rough uncertainty 
in momentum: 2 2

1 1
2 2

k p k
σ σ

∆ = ⇒ ∆ = ∆ == =

22x σ∆ =

2
2

1 2
2

p x σ
σ

∆ ∆ = == =

2
p x∆ ∆ =

=

Hence the product of uncertainties is a constant, independent of σ

NB: The Uncertainty relation is usually evaluated using rms
widths rather than our 1/e estimate. In that case we get

So the Gaussian is actually a minimum uncertainty wavepacket

( )

( ) ( )

2 2

22
0

2 / 2

2 2

x

k k

x e

A k e

σ

σ

ψ −

− −

∝

∝
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Summary of the
Uncertainty Principle

We have now seen three ways of thinking about the Uncertainty principle:

(1) As the necessary disturbance of the system due to measurements 
(e.g. the Heisenberg microscope)

(2) Arising from the properties of Fourier transforms (narrow spatial 
wavepackets need a wide range of wavevectors in their Fourier 
transforms and vice versa)

(3) As a fundamental consequence of the fact that x and p are not 
compatible quantities so their corresponding Hermitian operators do 
not commute. They do not share any eigenvectors and therefore 
cannot have precisely defined values simultaneously.

1
2

ˆ ˆFor general non-commuting operators ,

ˆ ˆ,

Q R

q r Q R⎡ ⎤∆ ∆ ≥ ⎣ ⎦

2xx p∆ ∆ ≥
=

Evolution of expectation values
Consider the rate of change of the 
expectation value of an observable Q 
for a time-dependent wavefunction

*

*
* *

* *

* *

d d ˆ( )d
d d

ˆˆ ˆ( ) ( ) ( )d

ˆˆ ˆˆ ˆ( )( ) ( )d

ˆˆ ˆˆ ˆ( ) ( ) d

ˆˆˆ ,

Q
i i Q x

t t

Qi Q i Qi x
t t t

QH Q QH x i
t

QH Q QH x i
t

QH Q i
t

∞

−∞

∞

−∞

∞

−∞

∞

−∞

= Ψ Ψ

∂Ψ ∂ ∂Ψ
= Ψ +Ψ Ψ +Ψ

∂ ∂ ∂

∂
= − Ψ Ψ +Ψ Ψ +

∂

∂
= −Ψ Ψ +Ψ Ψ +

∂

∂⎡ ⎤= − +⎣ ⎦ ∂

∫

∫

∫

∫

= =

= = =

=

=

=

*
*

ˆ

ˆ

i H
t

i H
t

∂Ψ
= Ψ

∂
∂Ψ

− = Ψ
∂

=

=

Ehrenfest’s theorem

ˆd ˆˆ ,
d
Q i QH Q
t t

∂⎡ ⎤= +⎣ ⎦ ∂=

( ) ( )* ˆ( ) , ,Q t x t Q x t dx
∞

−∞
= Ψ Ψ∫

* *ˆ ˆ( )d ( )d
ii j jf Hf x f Hf x

∞ ∞

−∞ −∞

=∫ ∫
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Example: conservation of energy

Although the energy of a system may be uncertain (in the sense that 
measurements made on many copies of the system may give different 
results) the average energy is always conserved with time.

Consider the rate of change of the mean energy

*

-

ˆ d

ˆˆ ˆ,

d E
H x

dt t

i HH H
t

∞

∞

∂
= Ψ Ψ
∂

∂⎡ ⎤= +⎣ ⎦ ∂

∫

=

ˆ
0H

t
∂

=
∂

ˆd ˆˆ ,
d
Q i QH Q
t t

∂⎡ ⎤= +⎣ ⎦ ∂=

The Hamiltonian is independent of time

Everything commutes with itself! ˆ ˆ, 0H H⎡ ⎤ =⎣ ⎦

d
0

d
E
t

=

Example: position and momentum

These look very like the usual classical expressions relating position and 
velocity and Newton’s second law. So we recover classical mechanics-like 
expressions for the evolution of expectation values.

Consider the rate of change of the mean position

*

-

ˆd ,
d x i xx x H x
dt t t

∞

∞

∂ ∂⎡ ⎤= Ψ Ψ = +⎣ ⎦∂ ∂∫ =

2

2 2

2

d ˆ
( ),

d 2

,
2

ˆ x

x i p V x x
t m

i d x
m dx

pi d
m dx m

⎡ ⎤
= +⎢ ⎥

⎣ ⎦

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
−

= =

=

=
=

=

Can also show similarly that
d ( )

d
xp dV x
t dx

= −

2

2 , 2d dx
dx dx
⎡ ⎤

=⎢ ⎥
⎣ ⎦

0x
t
∂

=
∂

[ ] [ ] [ ], , ,A B C A C B C+ = +

[ ]( ), 0V x x =
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Summary (1)
There is a wavefunction

Linear Hermitian Operators represent observables
Eigenvalues give possible measurement results

Orthonormality of eigenfunctions

Completeness  and the overlap integral

Position and momentum operators
Other operators: use these in the classical expression

Collapse of the wavefunction
at a measurement

ˆ ˆ xx x p i
x
∂

= = −
∂
=

*
m n mndxφ φ δ

∞

−∞
=∫

( )

( ) ( )*

, ( ) ( )

( ) ,

n n
n

n n

x t a t x

a t x x t dx

φ

φ
∞

−∞

Ψ =

= Ψ

∑

∫

ˆ
n n nQ qφ φ=

( ) ( ) ( ) ( )n n n
n

x a x x xψ φ ψ φ= → =∑ 2Pr na=

* * *ˆ ˆ( )d ( )di j j if Of x f O f x
∞ ∞

−∞ −∞

=∫ ∫

Expectation values 

and Ehrenfest’s theorem

Normalization

Time-dependent Schrödinger equation

Commutation relations

and the Uncertainty principle

Compatible observables:

Commute

Have simultaneous eigenfunctions

Can be uniquely determined simultaneously

Summary (2)

ˆ ˆ ˆˆ ˆ ˆ,Q R QR RQ⎡ ⎤ ≡ −⎣ ⎦ [ ]ˆ ˆ, xx p i= =

ˆd ˆˆ ,
d
Q i QH Q
t t

∂⎡ ⎤= +⎣ ⎦ ∂=
2* ˆ

n n
n

Q Q dx a q
∞

−∞
= Ψ Ψ =∑∫

2 1n
n

a =∑

ˆi H
t

∂Ψ
= Ψ

∂
=

1
2

ˆ ˆ,q r Q R⎡ ⎤∆ ∆ ≥ ⎣ ⎦


