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Outline of section 7

• Interaction of atoms with magnetic fields

• Stern-Gerlach experiment

• Electron spin

• Addition of angular momentum

• The 3D infinite square well

Atoms in magnetic fields
Classical theory: Interaction of orbiting 
electron with magnetic field:

Orbiting electron behaves like 
a current loop:
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In a magnetic field B, classical interaction energy is: 

Corresponding quantum Hermitian operator is

v

r
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H = −µ.B
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Splitting of atomic energy levels
For B-field in the z direction, the total Hamiltonian for the atom is

0
ˆ ˆ ˆB z

z
BH H Lµ

= +
=

The energy eigenfunctions of the original atom are eigenfunctions of Lz so 
they are also eigenfunctions of the new Hamiltonian

(Hence the name “magnetic 
quantum number” for m.)0 B zE E m B l m lµ= + − ≤ ≤

B = 0: (2l+1) degenerate 
states with m = -l,…+l

B ≠ 0: (2l+1) states with 
distinct energies

m = 0

m = -1

m = +1

The Stern-Gerlach experiment  (1922)

( ) z
B

dBm
dz

µ= ∇ ⋅ = −F µ B

In an inhomogeneous magnetic field there is a force on the 
atoms which depends on m

0 B zE E m B l m lµ= + − ≤ ≤

N

S

Direction of force tends to decrease the magnetic potential energy

So atoms in different internal angular momentum states will experience different 
forces and will move apart. So if we pass a beam of atoms through an 
inhomogeneous B field we should see the beam separate into parts
corresponding to the distinct values of m.

Predictions:

1. Beam should split into an odd number of  parts (2l+1)

2. A beam of atoms in an s state (e.g. the ground state of hydrogen, n = 1, l = 0,   
m = 0) should not be split.
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The Stern-Gerlach experiment (2)
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Collecting plate

( )= ∇ ⋅F µ B
Beam of atoms with a single electron in an s state (e.g. silver, hydrogen)

Study deflection in inhomogeneous magnetic field.  Force on atoms is

Results show two groups of atoms, deflected in 
opposite directions, with magnetic moments Bµ µ= ±

Consistent neither with classical physics (which would predict a continuous 
distribution of µ) nor with our quantum mechanics so far (which always 
predicts an odd number of groups and just one for an s state).

N

S

Electron spin
Stern-Gerlach results must be due to some additional internal source of angular 
momentum that does not require motion of the electron.  This is known as “spin” and 
was suggested in 1925 by Goudsmit and Uhlenbeck building on an idea of Pauli. It 
is a relativistic effect and actually comes out directly from the Dirac theory (1928).

Goudsmit Uhlenbeck

Introduce Hermitian operators and eigenfunctions for 
spin by analogy with what we know from orbital 
angular momentum. We have two new quantum 
numbers s and ms

Pauli
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Usual form of commutation relations

etc. c.f
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A complete set of quantum numbers

The complete set of quantum numbers is: n,l,m,s,ms with s = ½ and ms = +/- ½.

Note that the spin functions χ do not depend on 
the electron spatial coordinates r,θ,φ; they 
represent a purely internal degree of freedom. 

H atom in magnetic field, with spin included:

,( ) ( ) ( )
s snlmsm nl lm s mR r Yψ θ φ χ= ,r

0
ˆˆ ˆ ˆ( )

2 (Dirac's relativistic theory)
2.00231930437 (Quantum Electrodynamics)

BH H g

g
g

µ
= + ⋅ +

=
=

B L S
=

1/ 2,1/ 2 1/ 2, 1/ 2

1 0
,

0 1
χ χ −

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

g = gyromagnetic ratio

Hence the full wavefunction of an electron in the H atom is

Addition of angular momenta
So, an electron in an atom has two sources of angular momentum:

• Orbital angular momentum (from its motion around the nucleus)

• Spin angular momentum (an internal property of its own).

What is the total angular momentum produced by combining the two?

Classically we would just add the 
vectors to get a resultant

= +J L S
− ≤ ≤ +L S J L S

But we have to be careful about the possible eigenvalues for J. 
L defines a direction in space and S can not be parallel to this because 
then we would know all three components of S simultaneously.

J

L

S

ˆˆ ˆ= +J L S

In QM we define an operator for the total angular momentum
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Addition of angular momentum (2)
However, we can certainly add the 
z-components of angular momentum

2 2

2 2

2 2

ˆEigenvalues of   are  ( 1)  with  0,1,2,3...
ˆEigenvalue of   is  ( 1)  with  1/ 2
ˆEigenvalues of   are  ( 1)  with  - s   in integer steps
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This is like the classical rule but using the quantum numbers
rather than the angular momentum vector. The total angular 
momentum quantum number j takes values between the sum 
and difference of the corresponding quantum numbers for l 
and s in integer steps. For each j, there are 2j+1 possible 
values of the quantum number mj describing the z-
component, as usual for angular momentum.

1 1
2 2,
, ,j

j l l
m j j
= − +

= − +…

The possible values for the magnitude of the total 
angular momentum J2 are given by the rule

Example: the 1s and 2p states of 
hydrogen

The 1s state:

The 2p state:
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Addition of angular momenta (3)
The same rules apply to adding all other angular momenta

Example: 2 electrons in an excited state of the He atom, one in the 1s state and 
one in the 2p state (defines the 1s2p configuration in atomic spectroscopy):

First construct combined orbital angular momentum L of both electrons:

Then construct combined spin S of both electrons:

Hence there are two possible terms (combinations of L and S):

…and four levels (possible values of total angular momentum J arising from 
a given L and S)

1 1
1 1 2 22 20; ;         1;l s l s= = = =

Term notation
Spectroscopists use a special term 
notation to describe terms and levels: 2 1S

JL+

• The first (upper) symbol is a number (known as the multiplicity) giving the 
number of spin states corresponding to the total spin S of the electrons

• The second (main) symbol is a letter encoding the total orbital angular 
momentum L of the electrons:

• S denotes L = 0
• P denotes L = 1
• D denotes L = 2 (and so on);

• The final (lower) symbol is a number giving the total angular momentum 
quantum number J obtained from combining L and S.

Example: terms and levels from previous examples are:
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The 3D infinite square well

Consider a particle which is free to move in 
three dimensions everywhere within a cubic box, 
which extends from –a to +a in each direction.  
The particle is prevented from leaving the box by 
infinitely high potential barriers. x

y
z

Time-independent Schrödinger equation 
within the box is free-particle like:

Separation of variables: take x, or y, 
or z

( , , ) ( ) ( ) ( )x y z X x Y y Z zψ =

V = ∞ V = ∞

V(x)

-a a

0V=

with boundary conditions ( ) ( ) ( ) 0.X a Y a Z a± = ± = ± =

Substitute in Schrödinger equation:

Divide by XYZ:

We obtain three effective one-dimensional Schrödinger
equations. We’ve solved these already (cf Sec. 3).

The 3D infinite square well (2)
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The 3D infinite square well (3)
Wavefunctions and energy eigenvalues are known 
from solution to one-dimensional square well.

The total energy is

Summary
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The electron has spin 1/2

Interaction with magnetic field

0
ˆˆ ˆ ˆ( )BH H gµ

= + ⋅ +B L S
=

g = gyromagnetic ratio ≈ 2

,( ) ( ) ( )
s snlmsm nl lm s mR r Yψ θ φ χ= ,r

1 1
2 2,
, ,j

j l l
m j j
= − +

= − +…

ˆˆ ˆ= +J L S

Full atomic wavefunctions are

Addition of angular momentum with spin

2 2ˆEigenvalues of   are  ( 1)J j j + =

Spectroscopic term notation

2 1S
JL+


