Physics 3C26 - Problem Set 1

December 21, 2005

To be handed in February 2

1. **Quick questions [20]**

- (a) In classical mechanics we determine positions and momenta of all particles for all times. What do we determine from quantum mechanics? [2]
- (b) What is the meaning of the wave function? Why does $\int_{-\infty}^{\infty} |\psi(x)|^2 dx = 1$? [2]
- (c) If you have a solution of time independent Schrödinger equation with eigenfunction $\Phi_n(x)$ and energy E_n , what does the corresponding time-dependent wavefunction $\Psi(xt)$ equal? [2]
- (d) What is the meaning of a quantum expectation value? [2]
- (e) What property of Hermitian operators makes them suitable for describing physical observables? [2]
- (f) If I expand a wave function $\psi(x)$ in terms the eigenfunctions $\phi_n(x)$ of operator \hat{Q} with corresponding eigenvalues q_n , so that $\psi(x) = \sum_n C_n \phi_n(x)$, what is the expectation value of \hat{Q} ? What is the meaning of the expansion coefficients C_n ? [2]
- (g) What does the expression $[\hat{A}, \hat{B}]$ equal? What is its name? [2]
- (h) If $[\hat{A}, \hat{B}] = 0$, what can you say about the eigenfunctions of \hat{A} and \hat{B} ? [2]
- (i) In Dirac notation, what does $|n\rangle$ correspond to? What is meant by $\langle n|\hat{Q}|m\rangle$? [2]
- (j) In matrix notation, how do we represent wave functions? How do we represent operators? [2]

2. Wavefunctions [20]

Consider a particle in one dimension whose wave function is $\psi(x) = Nx \exp(-\alpha x^2/2)$.

- (a) Show that $N = (4\alpha^3/\pi)^{1/4}$ [5]
- (b) Write down an expression for the expectation value of the position of the particle and show $\langle x \rangle = 0$. What is the probability of finding the particle at in a very narrow region of width Δx about this position? [5]
- (c) Write the expression for the mean uncertainty in the position of the particle, and show that it equals $\sigma_x = \sqrt{3/2\alpha}$. [5]
- (d) Sketch a graph of $\psi(x)$ for both positive and negative x and mark on it the positions of $\langle x \rangle$ and $\pm \sigma_x$. [5]

You can use

$$\int_{-\infty}^{\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}, \quad \int_{-\infty}^{\infty} x^2 e^{-\alpha x^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{\alpha^3}}, \quad \int_{-\infty}^{\infty} x^4 e^{-\alpha x^2} dx = \frac{3}{4} \sqrt{\frac{\pi}{\alpha^5}}$$

3. Dirac notation [20]

- (a) Consider a set of orthonormal states represented in Dirac notation by $|n\rangle$. What does $\langle n|n\rangle$ equal? What does $\langle n|m\rangle$ ($n \neq m$) equal? [2]
- (b) Suppose that $|n\rangle$ is an eigenstate of the Hamiltonian \hat{H} so that $\hat{H}|n\rangle = \epsilon_n |n\rangle$. Using this equation, what does $\langle n|\hat{H}|n\rangle$ equal? What does $\langle n|\hat{H}|m\rangle$ ($n \neq m$) equal? [2]
- (c) Now suppose we create a general state $|\psi\rangle = \sum_{n} C_{n} |n\rangle$. What does $\langle \psi | \hat{H} | \psi \rangle$ equal? [4]
- (d) Write down the expression for the variance of the measured energy as an expectation value of the form $\langle \psi | \dots | \psi \rangle$. What does the variance equal? [4]
- (e) We would like to write the operator \hat{H} in Dirac notation. That is: $\hat{H} = \sum_{nm} a_{nm} |n\rangle \langle m|$. By using the equation $\hat{H}|n\rangle = \epsilon_n |n\rangle$, find a_{nm} . [4]
- (f) Consider two states $|a\rangle$ and $|b\rangle$. Now let \hat{H} operate on these to give $\hat{H}|a\rangle = |A\rangle$ and $\hat{H}|b\rangle = |B\rangle$. What are the corresponding equations for \hat{H}^{\dagger} ? If \hat{H} is hermitian, show that $\langle A|b\rangle = \langle a|B\rangle$. Hence show that the eigenvalues of \hat{H} are real. [4]