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1. Quick questions [20]

(a) The probabilities of measuring values of observables [2]

(b) The modulus squared of the wavefunction gives the probabil-
ity density for finding a particle at a given point.

∫∞
−∞ |ψ(x)|2dx =

1 because the probabilities must add up to 1. [2]

(c) Ψ(xt) = Φn(x) exp(Ent/i~) [2]

(d) A quantum expectation value is the average of some observ-
able obtained by measuring its value many times for system
that have been prepared in the same way for each experiment.
[2]

(e) Hermitian operators have real eigenvalues. [2]

(f) 〈Q〉 =
∑

n |Cn|2qn. |Cn|2 is the probability that when the ob-
servable Q is measured the value qn is obtained. [2]

(g) [Â, B̂] = ÂB̂ − B̂Â. It is a commutator. [2]

(h) If [Â, B̂] = 0 then the eigenfunctions of Â and B̂ are equal. [2]

(i) In Dirac notation |n〉 corresponds to a quantum state of the
system with wave function Ψn. 〈n|Q̂|m〉 =

∫
ΨnQ̂Ψmdx. [2]

(j) In matrix notation we represent wave functions by a vector of
coefficients. We represent operators by matrices. [2]

2. Wavefunctions [20]

Consider a particle in one dimension whose wave function is ψ(x) =
Nx exp(−αx2/2).

(a) Normalization gives

1 =
∫ ∞

−∞
|ψ(x)|2dx

= N2

∫ ∞

−∞
x2 exp(−αx2)dx

1



= N2 1
2

√
π

α3

⇒ N =
(

4α3

π

)1/4

(b) Expectation value of the position is

〈x〉 =
∫ ∞

−∞
x|ψ(x)|2dx

= N2

∫ ∞

−∞
x3 exp(−αx2)dx

= 0

where the last line follows from the fact that the integrand is
an odd function of x. The probability of finding the particle at
0 is |ψ(0)|2∆x = 0.

(c) The mean uncertainty in the position of the particle is

σx =

√∫ ∞

−∞
(x− 〈x〉)2|ψ(x)|2dx

=

√∫ ∞

−∞
x2|ψ(x)|2dx

=

√∫ ∞

−∞
N2x4 exp(−αx2)dx

=
(

4α3

π

)1/4( 9π
16α5

)1/4

=

√
3
2α

(d) The graph:
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3. Dirac notation [20]

(a) 〈n|n〉 = 1 and 〈n|m〉 = 0 for n 6= m

(b) 〈n|Ĥ|n〉 = 〈n|εn|n〉 = εn and 〈n|Ĥ|m〉 = 〈n|εm|m〉 = 0 for (n 6= m)

(c) 〈ψ|Ĥ|ψ〉 =
∑

nm C∗nCm〈n|Ĥ|m〉 =
∑

n |Cn|2εn
(d) The variance of the measured energy is

σ2
H = 〈ψ|(Ĥ − 〈H〉)2|ψ〉

=
∑
nm

C∗nCm〈n|(Ĥ − 〈H〉)2|m〉

=
∑

n

|Cn|2ε2n −

(∑
n

|Cn|2εn

)2

(e) We haveĤ =
∑

nm anm|n〉〈m| and Ĥ|n〉 = εn|n〉. Thus

Ĥ|p〉 =
∑
nm

anm|n〉〈m|p〉

=
∑

n

anp|n〉

⇒ 〈q|Ĥ|p〉 =
∑

n

anp〈q|n〉

= aqp

⇒ aqp = 〈q|εp|p〉
= εpδqp

(f) We have Ĥ|a〉 = |A〉 and Ĥ|b〉 = |B〉. Thus 〈a|Ĥ† = 〈A| and
〈b|Ĥ† = 〈B|. If Ĥ is hermitian then Ĥ = Ĥ† and hence 〈A|b〉 =
〈a|Ĥ†|b〉 = 〈a|Ĥ|b〉 = 〈a|B〉. If |a〉 and |b〉 are eigenstates of the
Hamiltonian then 〈A|b〉 = ε∗a〈a|b〉 = 〈a|B〉 = εb〈a|b〉 and hence
0 = (ε∗a − εb)〈a|b〉 and 0 = (ε∗a − εa) since 〈a|a〉 > 0. Thus the
eigenvalues are real.
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