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Answers to Set 1

ASTM-052 Extragalactic Astrophysics
ANSWERS: SET NUMBER 1

1. Kapteyn was unaware of the presence of interstellar

dust in the plane of the Galaxy. (a) This limited
visibility in the plane, so that only a fraction of it
could be observed. (b) In the perpendicular
direction, one can see right out of the plane.
Kapteyn's model therefore had the true thickness of
the plane but only a fraction of its diameter.

We have
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Hubble measured h to be 5, giving Hy* — which is
roughly the age of the universe — as 2 x 10° y, less
than the age, for example, of globular clusters in the
Galaxy.

O O O o Sa Sb S

The flattest elliptical galaxies seen are E7,

corresponding to the value 0.7 for e. From equation
(2.1) of the question, we have

cosfd=1-e (2.1)
so that

(050 inimum = 0-3 (2.2)
or

O maximum = €08 +(0.3)=72.5° (2.3)

[Remember that & increases as cosé decreases.]
Hence, if all elliptical galaxies were flat discs
inclined at various angles to our line of sight, they
would have to conspire to be so inclined by no more
than about 75°.

. A colour is a measure of the ratio of the flux
densities of a source at two different wavelengths.

©P E Clegg 2001

g
@@QD -

lof4

U-B

\ Temperature increasing

Black-body line

/‘\ ~ Y
bluer
O —
+1.0 ! L
-0.6 0 +1.0
<— bluer B-V

Hot young stars are blue whilst, on the whole, red
stars are old. The figure shows that elliptical
galaxies are redder than spirals and that spirals get
bluer as one goes along the Hubble sequence. This
suggest that ellipticals contain predominantly old
stars whilst spirals contain increasingly more young
stars as we go froma to d.

The surface brightness of a galaxy is its flux density

per unit solid angle, as a function of position in the
galaxian image.
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Because 1(6) is given only as a function of 6, we can
assume that the image of the galaxy has circular
symmetry. Consider an annulus of (angular) radius 6
and width dé. The solid angle dQ subtended by this
annulus is given by

dQ =2z40 4.1)
and the flux dF coming from it is given by
dF = 1(0)x 27646 . (4.2)

The total flux density of the galaxy is therefore

given by

F=[1(0)r0d0. 4.3)
0

Substituting for the de Vaucouleurs profile in
equation (4.3), we get

) 4 . (4.9
2fexpl —[ 2| |2 142
wonfen () [2)fz)
If we put
1/4
x=[9ﬁj , (4.5)
equation (4.4) becomes
F=2d (0)6?02Te‘xx4d(x4)
0 . (4.6)

=271 (0)95 x4[ e dc= 1 (0)95 x8x 7.
0

from equation 43.4 given in the question. Hence,
F =8z621(0)

From equation (4.3), we have for the fictitious
galaxy,
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l,=1(0) and Fgy =F (4.9)
then we have from equations (4.7) and (4.8),

2702, =817607 (4.10)
so that

O =A% 710, ~ 2000, . (4.11)

This result shows what a very large contribution the
outer regions of an elliptical galaxy make to the total
luminosity.

Line of sight to observer

The figure show schematically the relation between
Ie(0) and Je(R). Whilst Je(R) is a measure of the
emission per unit volume as a function of distance
from the centre of the galaxy, Ig(6) is a measure of
the emission per unit area of the image as a function
of the projected (angular) distance from the centre.
As can be seen from the sketch, Ig(€) contains
contribution from Jg(R). at various value of R, In
particular, at the 6=0 for example, the emission from
the centre of the galaxy at R=0 is diluted by
emission for regions, along the line of sight, further
from the centre. This dilution means that 1g(6) falls
off less rapidly with #than does Je(R) with R.

The same does not apply to the discs of spiral
galaxies because they are flat and there is no
integration along a significant line of sight.

5. Suppose that the mass M is related to G, R and v by
M =kG*RPv”, (5.1)
where k is a dimensionless constant. In terms of
dimensions, we have
VERVEESINTS 8 (52)

Comparing coefficients of M, L and t on each side
of the equation, we have

@dn
0=3a+p+y (5.3)
0=—20-y

having solutions
a=-1

p=1

y=2

(5.4)
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so that
M =k x GIR? (5.5)
or
M~ Rv?
G

6. We have for the width Adpgpper OF the line arising
from Doppler broadening,

AADoppIer = (0-503)2 - (0.05)2 nm
=0.500 nm

(6.1)

Hence, the mean-squared line-of-sight velocity
<v;%> is given by

0" ar_os

=102 (6.2)
c A, 500

(0]
so that

1/2
<v,2> =103 x3x108 ms? =300kms®.  (6.3)
[Apologies for the typo in the question.]

If we assume that the mean-squared velocities are
the same in each direction, then the total mean-
squared velocity <v®> is 3<v,>>.The mass Mcan be
estimated from

 50x3.1x10% x 3 (300x10° ] "
6.67x107
=3.6x10 kg ~2x10”M

sun -
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Slit of spectroscope Wavelength —p»

The figure shows schematically how long-slit
spectra are used to measure a galaxy's rotation curve
in the optical. The slit of the spectrograph is placed
along the major axis of the galaxy as shown. The
resultant spectrum of a single line of rest-
wavelength A, is shown on the right, relative to the
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same line produced by a laboratory source. The
parts of the galaxy that are approaching the observer
give rise to blue shifted lines whilst those that are
receding give rise to red-shifted lines. The overall
effect is to produce the curved spectral line shown
in the figure. Since distance along the slit is
(8reportional to the distance from the centre of the
galaxy, this can immediately be translated into a
rotation curve.

The centripetal force needed keep material of mass
m in circular orbit of radius r, with velocity ©(r),
about the centre of the galaxy is

_mo*(r) (6.4)
r

This can only be supplied by the gravitational force:

——GMz(r), (6.5)
r

where M(r) is the mass contained within radius r of

the centre. Equating the forces given in (6.4) and

(6.5), we get

M (r)=re ). (6.6)
G

Given that

o(r)~0, x; r<r, (6.7)

in the inner part of the galaxy, we have from
equation (4.3),

2
M(r):L{@O H =[ o Jrs (6.8)

Gr2

in these regions.

The mass dM(r) contained in a thin shell of
thickness dr at r is given by

dM (r)=4ar?p(r)dr (6.9)]
where r is the density at r. Hence
1 dM(r)
=——_— 7 6.10
A="5=4 (6.10)]

Applying this to equation (4.7), we have

1 dffe2),
r)= — r

2
:i % = constant.
4z | Gr2

(6.11)]

By the definition of flux-density F, we have for the
luminosity L of a galaxy that is at distance d,
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L=(4zd?)xF .

Using the expression for d given in equation (7.4) of
the question, we get

2
L= 47{2 LJ F. (6.13)
HO

If a galaxy of radius R is at a distance d, its angular
diameter @ is given by

R
0=—. 6.14
g (6.14)
If we substitute for R from equation (4.8) into
equation (4.7) of the question, we get

2 2
M ~(dx9)x"E=[zHij"E0 (6.15)
0

From equations (6.13) and (6.15), we have directly
that

2
S LYy
47 Gex zF
All the quantities in the square bracket of equation
(6.16) are either constants or are directly observed.

The measured mass-luminosity ratio is therefore
directly proportional to the Hubble constant.

Elliptical galaxies have mass-luminosity ratios,
measured in solar values, in the range of a few tens
of h whereas the value for spirals is around 10
h.

. The Euler equation applied to the density p of a
fluid is

Dp op

—=—+UV)p. 6.17
St CAYV (6.17)
The continuity equation is

0=Lv(p)=L 1 pvusuv)p.  (6.18)
ot ot

From equations (6.17) and (6.18), therefore, we get

%’t’ =—pVu. (6.19)

For an incompressible fluid, Do/Dt must be zero so

Vu=0. (6.20)
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8.(6.12)

dA

p—> —» p+dp
dz

dy

dx

Consider first the pressure acting on the faces of the
a rectangular element of fluid parallel to the x-axis.
From the figure, we have for the force dfygy, acting
to the right on the left-hand face,

df igne = PdA, (6.21)

where dA is the area of one of the cube’s faces. The
force dfes acting to the left on the right-hand face is

df e = (p+dp)dA. (6.22)

The net pressure force df;, in the positive x-direction
is therefore given by

df, = pdA—(p + dp)dA = —dpdA

=—dp x dydz.
(6.16)
The mass dm of fluid contained within the element

is given by
dm = pdV = p x dxdydz (6.24)

(6.23)

so that the force F, per unit mass of the fluid in the
x-direction is given by
dfy, —dpxdxdy 1p

Fdm="x _ ZOpxOXly . (6.25)
dm  pdxdydz P OX

We get similar expressions for the y- and
z-directions so that the total pressure force F, per
unit mass of the fluid is given by

1
F,=—~vp. (6.26)
P

Version 1.0 (21/01/01)



